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ABSTRACT 
Ischemic stroke often results in the devastating loss of nervous tissue in the cerebral cortex, 

leading to profound motor deficits when motor territory is lost, and ultimately resulting in a 

substantial reduction in quality of life for the stroke survivor. The International Classification of 

Functioning, Disability and Health (ICF) was developed in 2002 by the World Health Organization 

(WHO) and provides a framework for clinically defining impairment after stroke. While the 

reduction of burdens due to neurological disease is stated as a mission objective of the National 

Institute of Neurological Disorders and Stroke (NINDS), recent clinical trials have been 

unsuccessful in translating preclinical research breakthroughs into actionable therapeutic 

treatment strategies with meaningful progress towards this goal. This means that research 

expanding another NINDS mission is now more important than ever: improving fundamental 

knowledge about the brain and nervous system in order to illuminate the way forward.  

Past work in the monkey model of ischemic stroke has suggested there may be a relationship 

between motor improvements after injury and the ability of the animal to reintegrate sensory and 

motor information during behavior. This relationship may be subserved by sprouting cortical 

axonal processes that originate in the spared premotor cortex after motor cortical injury in squirrel 

monkeys. The axons were observed to grow for relatively long distances (millimeters), 

significantly changing direction so that it appears that they specifically navigate around the injury 

site and reorient toward the spared sensory cortex. Critically, it remains unknown whether such 

processes ever form functional synapses, and if they do, whether such synapses perform 

meaningful calculations or other functions during behavior.  

The intent of this dissertation was to study this phenomenon in both intact rats and rats with a 

focal ischemia in primary motor cortex (M1) contralateral to the preferred forelimb during a pellet 

retrieval task. As this proved to be a challenging and resource-intensive endeavor, a primary 

objective of the dissertation became to provide the tools to facilitate such a project to begin with. 

This includes the creation of software, hardware, and novel training and behavioral paradigms for 

the rat model. At the same time, analysis of previous experimental data suggested that plasticity 

in the neural activity of the bilateral motor cortices of rats performing pellet retrievals after focal 

M1 ischemia may exhibit its most salient changes with respect to functional changes in behavior 

via mechanisms that were different than initially hypothesized.  

Specifically, a major finding of this dissertation is the finding that evidence of plasticity in the unit 

activity of bilateral motor cortical areas of the reaching rat is much stronger at the level of 

population features. These features exhibit changes in dynamics that suggest a shift in network 

fixed points, which may relate to the stability of filtering performed during behavior. It is therefore 

predicted that in order to define recovery by comparison to restitution, a specific type of fixed point 

dynamics must be present in the cortical population state. A final suggestion is that the stability 

or presence of these dynamics is related to the reintegration of sensory information to the cortex, 

which may relate to the positive impact of physical therapy during rehabilitation in the postacute 

window. Although many more rats will be needed to state any of these findings as a definitive 

fact, this line of inquiry appears to be productive for identifying targets related to sensorimotor 

integration which may enhance the efficacy of future therapeutic strategies.  
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CHAPTER 1 

Introduction 

Motivation 

Each year, approximately 795,000 people suffer a stroke, contributing to its notoriety as the 

leading cause of long-term disability in the United States (Mozaffarian et al., 2015). The most 

prevalent type of stroke is ischemic (Feigin et al., 2009): commonly, ischemia occurs when a 

blood clot partially or fully dislodges, forming an embolus or thrombus respectively, which blocks 

the middle cerebral artery. This occludes the supply of nutrients to motor areas of the cerebral 

cortex, resulting in gradual cell death and diaschisis. The contralateral effectors previously 

under control by the now dead tissue consequently exhibit paresis (Gowland 1982) and may 

also become spastic depending on the degree of early paresis as well as the type of 

connections maintained by the destroyed descending projections (Ward 2012). These deficits 

functionally inhibit the ability to perform complex motor tasks, particularly those involving fine 

control of the distal upper extremities. Fortunately, motor impairment due to stroke can be 

modified in some instances by behavioral rehabilitation after injury (Kleim et al., 2008). 

 

Behavioral experience encourages neuroplasticity that is evident in the temporal encoding and 

decoding of information in the activity of individual cortical neurons and microcircuits (Mitz et al., 

1991; Wise et al., 1998). After brain injury, the sparing of distal forelimb representation near the 

lesion after intensive behavioral re-training in monkeys suggests that similar processes may 

relate to the benefits realized by rehabilitation (Nudo et al., 1996). This phenomenon, which is 

otherwise known as somatotopic map reorganization, likely manifests via simultaneous 

reorganization of neuronal networks at several levels of the central nervous system. The 
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reorganized somatotopy may not be specific to motor maps: axonal sprouting in monkeys after 

brain injury suggests that when possible, de novo physical connections arise between spared 

motor and sensory areas as well (Dancause et al., 2005). While the simplest explanation is that 

such connections most-likely foster communication between motor and sensory regions of 

cortex (Hickmott & Steen, 2005), it remains unknown not only to what end, but whether the new 

projections and the synapses that they form even serve any purpose at all during motor 

behavior.  

The Specific Aims of this thesis are directed toward the considerable technical challenges in 

answering such a question. The majority of empirical results contained in this work are 

observational. However, careful consideration of the neural population state during motor 

behavior predicts that a core mechanism during Motor Re-optimization1 is the assignment of 

an appropriate sensorimotor synaptic weighting schema.2 This re-optimization is most especially 

important after injury, as it is required for the de novo axonal processes that sprout and 

potentially reconnect sensorimotor areas as described in the works of Dancause and colleagues 

to ever serve as a route of reliable information transfer between the otherwise disconnected 

                                                
1 Controversial terms, such as recovery, restitution, and compensation will be avoided if possible. Motor 
Optimization is defined as an optimization process in which the cost function is proportional to the error 
between the desired motor output (generation of force by any combination of muscles desired to 
functionally move a peripheral effector through space or to exert force on a foreign body) and the actual 
motor output. The error magnitude could be specified using a common distance metric, such as the L2-
norm. Physiologically, it is likely that some similar calculation occurs, albeit in a highly nonlinear fashion. 
In this formulation, the error term is non-stationary with respect to time. Intuitively, this relates to the 
differential likelihood of an error influencing the functional outcome of the behavior during a given phase. 
Motor Re-optimization is different from motor optimization such as occurs during the learning of a motor 
behavior. The former implies that weightings on error during different phases of the behavior have already 
converged to a fixed value, while the latter allows that error weightings have yet to converge.  
 
2 When a motor behavior occurs, motor re-optimization is invoked. Given the perpetual and systemic 
changes that organisms undergo on the timescales of days, months, and especially years--with causes 
ranging from growth to disease--the only feature that allows robust and reliable execution of motor tasks 
is this intrinsic optimization of movement, which is governed at multiple levels of the nervous system. The 
cerebral cortex is probably not involved when error occurs below a perceptual threshold. However, if the 
motor error trajectory exceeds a learned threshold, it is perceived (although such a term is controversial in 
animal research; e.g. Nudo et al. 2000). Subsequent adaptive changes are the purview of the cerebral 
cortex, and require reassigned weights to motor output on the timescales of seconds, minutes, or hours.  
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regions3. In that light, the main contributions of this work are to provide meaningful hypothesis 

testing strategies for future experiments that target sensorimotor connections during motor re-

optimization after unilateral injury, such as occurs after stroke. 

Specific Aims 

Before answering the question of whether sensory and motor areas make use of presumptive 

new connections that form after cortical injury, the first step is to define an assay that is both 

sensitive to and selective for evidence of said connections. When the evidence must arise from 

the patterns of neural activity that allow the temporal encoding and decoding of sensory 

information during movement, it becomes a system identification problem. Because the rat 

pellet retrieval model is extensively characterized as an animal model of stroke, the system 

takes the form of the reaching rat as it retrieves pellets4. Furthermore, because of the interest in 

the restoration of connections between sensory and motor areas of cortex, the system 

measurement must reflect signals from sensory and motor areas of the brain. A final point that 

is argued in this thesis is that--although cumbersome--the system state5 must directly correlate 

with filtering related to the Motor Phenotype6, rather than to the outcome of the behavior. This 

is because functional outcomes are abstracted from movement due to the non-monotonicity of 

the response surface mapping that relates such measurements. The following aims form the 

basis for defining and implementing the system identification approach. The observational 

                                                
3 When motor tasks are complicated (i.e. during skillful behavior; or, after injury), errors are common. The 
consequent changes in response are predictive. Therefore, the role of the cerebral cortex in Motor Re-
optimization is to compare sensory feedback measurements from the periphery to the predicted motor 
(and sensory) state in order to directly modulate motor output weightings associated with the correct 
phase of a complex movement. 
4 The rat pellet retrieval model is sometimes called “the reaching rat” out of habit. 
5 Chapter 3 provides definitions of the system state variables and considerations on state architecture. 
6 The Motor Phenotype is defined as quantitative measurements describing the series of sub-

movements that comprise a compound movement. These measurements may include heuristics such as 
duration of the movement, or they could be the reconstructed world-coordinate position time-series of 
markers on the peripheral effectors of interest relative to behavioral landmarks. 
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results from these experiments provide a basis for future studies elaborating the relevance of 

connections between presumptive de novo connections between sensory and motor cortices 

after injury: 

1. Develop a pipeline to process and extract relevant neurophysiological and kinematic 

biomarkers from rat pellet retrieval experiments. Rats with a focal vasoconstrictive 

ischemia contralateral to the preferred forelimb were tested daily on the pellet retrieval 

task while concurrently acquiring video and neural signals from the behavior. 

a. It was hypothesized that over the first four weeks, plasticity in temporal encoding 

and decoding related to the motor behavior would exhibit a shift in injured rats, 

causing activity in premotor cortex of the hemisphere with the injury to more-

closely resemble activity in primary motor cortex of uninjured rats. 

2. Develop a model to distinguish between motor cortex sensory feedback and motor 

cortex sensory prediction. Video from multiple stereo-calibrated cameras was 

synchronized and forelimb markers were extracted using an artificial Deep Neural 

Network; the markers were then de-noised and reconstructed in an estimate of the 3D 

world space in which the behavior was performed. 

a. It was hypothesized that integrating kinematic and neural data using a Kalman 

formulation would allow improved identification of activity related to sensory 

feedback using a combination of coefficients from the Kalman gain matrix and 

state-measurement relation matrix, by comparison to the past method of 

correlating field potentials between the two areas. 

Results from experimental data used toward the first aim form the bulk of empirical observation 

used in predictive models. The surprising discrepancy between observation and the original 

hypothesis suggests that motor re-optimization after injury is quite different from motor learning, 
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and that the next experiments clarifying the error modality of the cortical sensorimotor filter 

could be a critical breakthrough for the future of direct behavioral intervention during physical 

therapy. 

Dissertation Contents 

This dissertation contains six chapters, including this road map. 

Chapter 2 gives more detailed information regarding stroke and its time course as it relates to 

upper extremity motor function. The chapter describes progress in acute treatment options as 

well as long-term therapeutic ones. A section emphasizing the translation of preclinical 

treatment results to therapeutic brain-computer interface (BCI) options consists primarily of a 

review article that was accepted for publication in a peer-reviewed journal (Murphy et al., 2016). 

Since the review was published in 2016, the final section, which discusses strategies for 

evaluating the efficacy of BCI such as the therapeutic closed-loop microstimulation strategy 

developed by the cortical plasticity lab, is augmented using newer data. These data include a 

conference proceedings paper, which implements a strategy for using recurrent neural networks 

as a variational autoencoder to recover the latent stochastic distribution of Gaussian processes 

related to the observed spiking time-series7. When data are modeled in this manner, it is 

possible to infer perturbations to an assumed dynamical system that generates the observed 

population spiking activity (which arise from deviations to the Gaussian prior). The study 

                                                
7 In recordings from the extracellular field potentials, action potentials from cells near the recording 

electrode cause characteristic deflections in the voltage differential between the recording electrode and 
reference in the range of 300-5,000 Hz. These signals are referred to as “spikes” due to their shape, and 
so spikes are commonly used interchangeably with “putative action potential” since the latter is 
cumbersome to say. When the timing of these spikes is treated as a stochastic point-process, the term 
Unit Activity is sometimes invoked to imply the involvement of some unknown number of neurons 
involved in the generation of the observed spikes. Although tools for spike sorting are provided in 
Chapter 3, with the exception of the conference proceedings paper discussed in Chapter 2 and the 
comparisons on spike detection performance of the module provided in Chapter 5, spike sorting was not 
applied to data used in neural analyses. 
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compares the temporal evolution of such perturbations between individual pilot rats receiving 

(therapeutic) closed-loop and (control) open-loop microstimulation in the primary forelimb 

sensory cortex (Murphy et al., 2018). An important takeaway is that while such nonlinear 

methods may sound complex and cutting edge, their ability to yield meaningful insight in this 

capacity is limited in this context. 

Chapter 3 reformulates the problem of studying the motor phenotype with respect to control 

systems elements. The goal is to align the approaches of the rehabilitation physiologist and 

control systems engineer. The chapter provides a discussion of tools created for the processing 

pipeline, as well as preliminary instructions on their use alongside examples. Many of these 

tools contain documentation that is associated directly with the publicly-available code at the 

source. Since such documentation continues to evolve, the reader should really check 

documentation for the relevant tool at the source: the author intends to maintain such tools out 

of principle and for his own future purposes. However, versions of the tools as of the time of this 

writing will remain available.  

Chapter 4 partially fulfills Aim 1. It describes acquisition system modifications that allow the 

execution of experiments involving rats performing pellet retrievals while being treated with 

closed-loop or control microstimulation--a prerequisite step to extracting biomarkers from the 

rats. The chapter contents were published previously as a manuscript detailing and 

characterizing the performance of these modifications to the compiled bit-file on the field 

programmable gate array (FPGA) at the core of the controller’s serial-parallel interface (SPI) in 

a peer-reviewed journal (Murphy et al., 2019). The changes add a programmable state machine 

module that improves spike detection. The specifications are mostly technical and application-

specific, but augment the online spike detection capability of any research done for closed-loop 

purposes using this equipment while also providing a graphical software interface update to 

make use of the improved features. Spike detection using this method is low-latency (on the 
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order of single milliseconds or less) and flexible (it hijacks the 8 DAC channels to allow up to 8 

custom inclusion or rejection thresholds on channels of interest). It is suggested that future 

closed-loop experiments could make use of this capacity to require relatively coincident 

detection of spikes on multiple channels to trigger a digital event using population features. 

Furthermore, changing the programmable hardware filter characteristic allows relatively minor 

changes in the current FPGA code to implement a similar method using the slow features of the 

local field potential (LFP8), which may be particularly useful in the translation of therapeutic 

closed-loop stimulation techniques. 

Chapter 5 contains empirical data collected prior to the arrival of the author at the lab. These 

data form the basis for the majority of future hypothesis testing suggested in the dissertation, as 

well as the rationale for formulating the system identification problem as described in Chapter 6. 

This chapter fulfills the rest of Aim 1 using multiple of the preliminary processing pipelines, for 

which code is also publicly available. A manuscript, which roughly follows the contents of the 

chapter, is in preparation for submission to Nature Communications (Pack et al. 2020)9. A 

previous version, which pertains to the same data but lacks the descriptions of population 

dynamics has been archived on a pre-print server (Pack et al. 2020). The results of these data 

suggest that filtering related to skillful movement that occurs in bilateral motor areas becomes 

unstable in some rats with focal M1 ischemia. This instability, which most likely arises from 

sensory errors, is associated with worse functional outcomes, even when only considering 

stereotyped movements with successful outcomes. In the context of past work (Dancause et al., 

                                                
8 The LFP is an electrical field that is measured using the differential between a measurement electrode 

and some distant impedance-matched reference electrode attached to the subject. The extracellular field 
potentials are sometimes referred to generically as the LFP; however, in this thesis the LFP is used 
specifically with reference to the “slower” signals of the brain. Therefore, further references to the LFP 
should assume a filter characteristic that is generally a low-order IIR low-pass filter with cutoff frequency 
of 100-Hz. Due to the frequency content being substantially lower than the acquisition sample rate, when 
discussed in this thesis, the LFP signal is almost always decimated from either 20 kHz or 30 kHz to 1 kHz 
after applying a second Chebyshev anti-aliasing filter. 
9 The dissertation author is listed second, but is noted as a co-first-author on this work. 
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2005; Nudo et al., 2000), the range of postoperative days required before it is possible to 

accurately regress linearized dynamics of the observed population features suggests that 

sensory errors are due to inappropriate gain on the synapses forming between de novo 

connections between motor and sensory areas.  

Chapter 6 fulfills Aim 2 by providing an example model using the Kalman formulation to model 

3D kinematic reconstructions using neural time-series. Code associated with this chapter 

resides in a public repository with instructions for use, so that the experimenter can tweak 

different noise parameters or assumptions on time-invariance as dictated by a hypothesized 

experimental design (such as might be arrived at after considering the results of Chapter 5). 

Preliminary data from an updated version of the pellet retrieval task are described. Data 

obtained using a peripheral mechanical stimulus in the anesthetized are also provided in order 

to suggest an activity substrate for filter nonlinearities that might be useful in future experimental 

design. These data are currently in preparation for submission to a peer-reviewed journal, 

although the full contents of the manuscript are not included with the chapter as not all of the 

study is relevant to this final chapter (Hayley et al. 2020). 

The end of Chapter 6 contains a recapitulation of the contents of this dissertation. 

  

https://docs.google.com/document/d/1UtKUgIaGbEtxvOLBYcLWBuu4SXp_kHU5aKSvqxBT9Jw/edit?usp=sharing
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Notes to the Reader 

Since one of the novelties of this work is its synthesis of approaches from several different 

disciplines to provide a conceptual framework for future experiments, the first order of business 

is to make a few clarifications in the hopes of unifying the expectations of a diverse readership.  

Should I be reading this? 

In all likelihood, if you are reading this work and not a member of the author’s thesis committee, 

then you are a graduate student in the field of rehabilitation medicine. If you are considering 

performing experiments that relate elements of motor behavior to both injury and patterns of 

neural activity, then the answer to the section header is: yes. If your experiments involve rats 

retrieving pellets, then consider this required reading.  

The ultimate goals of this work are to: 

1) assist you in constructing practical, feasible, and informative future experiments. The 

work was specifically written for the reader who lacks--but is open to developing--a more 

technical background. To appreciate the insight that this work offers requires some basic 

concepts from signal processing, linear algebra, and differential equations. It does not 

require mastery of any of these areas, although understanding some of the key 

takeaways benefits greatly from a basic understanding of linear filter design. Some of 

the more technical sections require a more-detailed understanding of random processes 

and noise. Concrete parametric values provided in examples are meant to give an 

engineer without a background in physiology or biology better intuition for forming priors. 

How is the motor phenotype studied in this work? 

Motor neurophysiologists sometimes use the words “behavior” and “movement” 

interchangeably. Therefore, in the future contents of this work, “behavior” does not refer to the 

colloquial definition. Instead, any such reference refers to the building-blocks of behavior: 
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voluntary movement. In this context, the Motor Phenotype is a compound movement that 

occurs in phases delimited by three (required) landmark events during pellet retrievals in 

reaching rats:  

● Reach Onset: the time of the first video frame in which the rat begins lifting and 

extending its forelimb toward the opening of the box, from inside of the box.  

● Grasp: the time of the first video frame in which the rat clearly closes its digits. This can 

occur even if the rat misses the pellet. 

● Complete: the time of the first video frame in which the rat retracts its supinated paw 

through the opening in the box and toward the mouth. This can occur even if the rat 

misses the pellet, although such instances are less common in Intact rats who typically 

immediately realize the pellet is not present and restart the reach10. 

The two phases allow the definition of three behavioral covariates with distinguishing trends 

between Intact and Injured11 rats: 

● Total Duration: The total duration required to complete a trial, which is the time between 

the Reach Onset and Complete events. 

● Reach/Advance Duration: The duration between the Reach Onset and Grasp events. 

● Retract Duration: The duration between the Grasp and Complete events. 

It should be noted that this description of motor phenotype is necessarily limited to the aspects 

thought most-likely the purview of the cerebral cortex. The building-blocks of movement (e.g. 

reflexes, postural control mechanisms, peripheral mechanical deficits), which are better-

                                                
10 This behavior is sometimes referred to as Flailing, and is touched on further in Chapter 5. 
11 While the only injury model provided in this work is the vasoconstrictive ischemia induced by 
Endothelin-1 injections (ET-1), the terms Intact and Injured are used generically to indicate the variety of 
animal models of cortical injury available to the rehabilitation researcher. Chapter 5 describes some of 
these models (as well as the motivation for the use of ET-1). 



11 

explained using subcortical or spinal circuits, are either not discussed or their effects are 

grouped together as process noise terms when relevant to formal models.  

A note regarding molecular, cellular, or histological covariates. 

The focus of this work is on building an assay to answer complicated and technical questions: 

are the new synapses on projections connecting spared motor and sensory areas after 

reorganization involved during movement? If this were the only question, perhaps alternative 

strategies not requiring the cumbersome relation of neural time-series data to the movement 

data would suffice. Such strategies could make use of classical tissue stains that relate to 

fundamental processes related to energy consumption at a cellular and molecular level. 

However, the refinement on this question suggests its significance to the future of rehabilitation 

medicine and also why such techniques were not used: can we identify pathological features of 

presumptive synaptic reorganization that explain why rehabilitation therapies sometimes 

succeed or fail? The only way to answer this latter question is to relate the neural control system 

at the level of cortical spiking and LFP patterns to movement measurements. An ideal 

experiment would also relate these measurements to coincident molecular features or at least 

make use of anatomical morphological measurements, such as synaptic bouton densities or the 

presence and orientation of sprouting processes. Unfortunately, all of these assays are more 

granular than the scope of this work: many cellular and molecular approaches were technically 

precluded by the mechanical disruption of nervous tissue due to the electrode microwire arrays. 

A note regarding descriptions of a lateralized behavior. 

A reader with a clinical background should note that the terms contralateral and ipsilateral are 

typically used with reference to the preferred reaching forelimb of the rat. Reference to the injury 

location is denoted as contralesional and ipsilesional with reference to the corresponding 

cortical area in both injured and matched intact control rats. Therefore, a description of an area 
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as ipsilesional does not mean that an injury was present, if the rat or group under discussion is 

the Intact group (as non-injured positive control rats shall always be described). 

A note regarding mathematical descriptions and notational convention. 

Equations appear infrequently as a matter of intent. However, in some cases, mathematical 

formulations are the clearest option for communication. Therefore, instances requiring 

mathematical descriptions provide illustrative examples with real values as they might appear in 

rat experiments. Certain sections, such as the end of Chapter 2 or the majority of Chapter 4 

require more frequent use of technical language. A reader with a non-technical background 

should skip these parts. However, the author implores the same reader to work through the 

equations presented in Chapter 5 and Chapter 6, which is the only way to grasp the 

significance of this work. Please do not hesitate to contact the author at any point via his 

personal email address (max.murphy11@gmail.com) with questions regarding clarification or 

explanation. 

Operators used in definitions 

Some operators that are not commonly-used12 for those outside mathematical or technical 

engineering fields must be defined first to avoid alienating an unfamiliar reader from the outset: 

● ≝ is read “equals by definition” and appears when defining an expression or formula 

● ≔ is also read “equals by definition” but is reserved for specific values 

● ∈ is read “in” or “element of” and refers to a set that some term belongs to. 

Matrix notation 

                                                
12 Some notational conventions are different from common convention due to limitations related to the 
text editing software used in composing a majority of this work.  

mailto:max.murphy11@gmail.com
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Upper-case letters denote matrices while lower-case letters denote vectors. Paired subscripts 

denote matrix row first, and column second13:  

 

Variable modifiers 

An asterisk to the right of a variable denotes a predicted quantity14:  

x* ≝ predicted value of x 

A tilde in the superscript to the right of a variable denotes an error quantity15: 

x~ ≝ x - x*, which is sometimes called the residual of x 

 

Heuristic for writing means 

Angled brackets around a variable denote an averaged quantity: 

<x> ≝ average value of x (over all x) 

When a subscript is added to the right of the angled brackets, it indicates that the average was 

taken for that variable conditionally upon the value of the denoted subscript variable. In practice 

for the purpose of this text, such a reference is most common with respect to cross-trial 

                                                
13 CNxM refers to the set of all such matrices with N rows and M columns consisting of elements from the 

set of complex numbers: in most cases, the set of real numbers suffices; however, the regression 
procedure that is critical to understanding the major findings of Chapter 5 requires an elementary 
understanding of linearized dynamical systems.  
14 Often, a hat above a variable is used to the same purpose in other works. 
15 Often, the tilde goes above the variable instead of as a superscript in other works. 

https://docs.google.com/document/d/1UtKUgIaGbEtxvOLBYcLWBuu4SXp_kHU5aKSvqxBT9Jw/edit?usp=sharing
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averages, where data from different trials aligned to a behavioral event are represented as a 

function of time relative to that event: 

xi(t) ≝ value of x at time t in trial i 

Where i is an index denoting which trial the function represents. Thus, the cross-trial average for 

the set of trials described by i∊ K is denoted: 

<x>K(t) ≝ cross-trial average of value of x(t)∊ X 

Where X is the ensemble representing all functions x(t). Similarly: 

<x>t ≝ time-average for each function x(t)∊ X 

In practice, such a time-average is used to avoid biases that spuriously decrease the total sum-

of-squares during least-squares regression. The time-average is usually computed in epochs of 

1-second or less around the motor behavior. Note that multiple subscripts might be used; for 

example: 

<x>K,t ≝ time-average for the cross-trial average function <x>K(t)∊ X 

Conditional Expressions 

Outside of notation used for conditional means, in general, if a function is to be realized 

conditionally upon some parametric value, then a vertical bar delimits the function arguments 

from the conditional parameter values (note when a function argument takes a specific value it 

is sometimes denoted in this way rather than supplying only the specific value; in such cases, 

the notation is a “long-hand” attempt to clarify where terms come from, and so if such notation 

seems redundant that is because it serves no other purpose than clarification): 
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x(t | i ∈ K) = xi(t), where i is an index in the set of L trials denoted by K = {i1, ... , iL} 

With respect to discrete samples, which are always the form in which data are realized, the 

distinction between discrete sample functions and their continuous abstractions is signified by 

brackets: 

x[tm | m ∈ {0,...,M-1}] ≝ the value of the discretely sampled function x(t | t ∈ T) when t = tm 

Here, T = {t0, ... , tM-1} denotes the set of M16 times for which an associated value of x(t) was 

saved in the sample record. Such an elaboration of the discrete sample function will not be 

provided in each case, but here it serves to indicate that the value of time t is continuous, that 

only the instants denoted by elements of T are members of the set comprising the sample 

record, and that tm is the specific value for the m-th sample. Note that x[tm] is identical. 

Similarly, the conditional operator appears more commonly in association with statements of 

probability and random variables. In this case, the tilde (~) is used to denote an element drawn 

from a random distribution17. A capital P is used to denote the probability of some expression. 

While a more detailed discussion of random variables accompanies the relevant parts of the 

text, a final explanatory example to synthesize the previous parts follows. Here, p is the discrete 

probability of a sampled function meeting or exceeding some value b: 

                                                
16 Note that indexing starts at t0 (often pronounced “t-naught”). Therefore, a vector containing M samples 
only takes its final value at tM-1. This semantic point becomes nontrivial when synchronizing time values 
across different datasets, analytical pipelines, and in general when indexing arrays in code. Realizing that 
in this formulation tm is actually the m-1 sample, we will still refer to it as the “m-th sample” for 
convenience. 
17 Most commonly, the random process is hoped to be drawn from a zero-mean, White Gaussian Noise 
(WGN) process, in which case it is denoted by the normal distribution: N(�,� | � = 0,� =1), where � 
denotes the distribution mean and � denotes the distribution standard deviation. If the WGN process is 
thought to have some temporal dependence (and typically, there is a first-order dependence on past 
values for these data), then � is used instead of � to denote the covariance matrix of adjacent samples. 
Other distributions employed in this work include the related Poisson and Binomial distributions, as well 
as the Uniform distribution. Each is discussed in the relevant later chapters. 
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p = P[xi[tm] ≥ b | X[tm] ~ N(0,1)] 

This formula should be read: 

“The value of p is equal to the probability that the m-th sample of function x for trial i is greater-

than-or-equal-to b, given that the values of the m-th sample for all trial-related functions in the 

set X are drawn from a normal distribution with zero-mean and unit standard deviation.”  

When we restate the formula in english, we see how such a statement could commonly occur: 

in the case of neural time-series related to behavior, such expressions occur commonly when 

setting a threshold criterion to define a particular trial of interest.  

If you’ve reached this point of the Introductory chapter, then one of two things has occurred: 

either you are serious about learning the contents of these works, or you saw equations and 

skipped to the end. Remember, to appreciate the strategies described herein, the student who 

lacks a technical background is required to restate each equation from the recommended 

chapters (specifically, Chapter 5 and Chapter 6) using plain english as is done above. The 

equations are not conceptually difficult; however, glossing over them precludes the use of the 

experimental methods they describe.  
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CHAPTER 2 

Challenges in relating preclinical results to clinical BCI therapies 

Abstract18 

Current research in brain computer interface (BCI) technology is advancing beyond preclinical 

studies, with trials beginning in human patients. To date, these trials have been carried out with 

several different types of recording interfaces. The success of these devices has varied widely, 

but different factors such as the level of invasiveness, timescale of recorded information, and 

ability to maintain stable functionality of the device over a long period of time all must be 

considered in addition to accuracy in decoding intent when assessing the most practical type of 

device moving forward. Here, we discuss various approaches to BCIs, distinguishing between 

devices focusing on control of operations extrinsic to the subject (e.g., prosthetic limbs, 

computer cursors) and those focusing on control of operations intrinsic to the brain (e.g. using 

stimulation or external feedback), including closed-loop or adaptive devices.  In this discussion, 

we consider the current challenges facing the translation of various types of BCI technology to 

eventual human application. 

                                                
18 The following chapter is mostly quoted from a literature review written by the author of this work and his 

colleagues (Murphy et al., 2016). Some minor modifications have been made in order to adapt the review 
to this doctoral thesis. The final section of the chapter includes a method reported by the author of this 
work and his colleagues in a 2018 conference proceedings paper (Murphy et al., 2018). This method 
relates to the final section of the review in that it describes a strategy for evaluating trial-by-trial changes 
in the cortical population spiking responses to microstimulation. It also relates to the subsequent 
chapters, because the described strategy introduces the consideration of population-level as a dynamical 
system, a point that is returned to in Chapter 3. In this case, the system is approximated using a 
nonlinear method: a variant of the variational autoencoder that uses a recurrent neural network (RNN) in 
order to identify the most-likely nonlinear system fit. Once the system has been recovered, it can then be 
used to estimate system-level perturbations, which may relate to the stimulation treatment regime. 
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Background 

Brain-computer interfaces (BCIs) and their applications for treatment of nervous system damage 

have shown enormous progress as functional restoration tools in pre-clinical studies.  In 

general, most BCIs are designed to bypass damaged structures and fiber tracts. BCIs range 

from common devices, such as cochlear implants that use externally recorded sound to directly 

stimulate auditory nerve fibers, to devices that derive control signals from cortical activity, 

allowing individuals with paresis to operate a prosthetic device. Other BCIs are designed to aid 

in acute rehabilitation training sessions. Regardless of the type, the major purpose of BCIs is to 

improve the quality of life for the patients who use them. 

Damage to the nervous system can result in profound sensory, motor, and cognitive deficits that 

strongly impact day-to-day functioning of afflicted individuals. The type and extent of these 

deficits are dependent upon the location and extent of the injury.  Injuries affecting motor cortex, 

such as might occur after a focal traumatic brain injury or stroke, can lead to impaired use of 

digits, limbs, or whole regions of the body due to loss of descending corticospinal neurons or 

disruption of sensory-motor integration. Spinal cord injury impacts communication of neural 

signals at the site of injury, leading to motor, sensory and autonomic deficits. For these types of 

injuries, there are no effective post-acute restorative treatments.  Research in stem cell therapy 

to regenerate damaged neurons that could restore damaged pathways is currently underway 

(Gavins & Smith 2015, Hosseini et al. 2015, Sharma et al. 2015, Sullivan et al. 2015), but is 

likely years from fruition. Recovery after central nervous system (CNS) injury is thought to 

manifest itself through neuroplastic mechanisms, which have been shown to be aided through 

rehabilitative therapy (Nudo & Friel 1999, Nudo et al. 1996). Dramatic recovery from motor 

deficits has occurred in some cases (Bajaj et al. 2015, Warnecke et al. 2015), but recovery from 

neurological injuries rarely results in a full restitution of function. Effectiveness of any therapy is 
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constrained by the type and extent of injury, efficiency of neuroplastic mechanisms involved, 

and type of intervention. BCIs offer a pathway, in conjunction with rehabilitative therapy, for 

promoting restitution of function.  

Current technology available for clinical populations ranges from simple devices that stabilize a 

shaking hand (Grimaldi et al. 2013; Popovic et al. 2011), to devices that augment the ability of a 

patient with locked-in syndrome to communicate with others (Holz et al. 2015). While these 

technologies offer promise for recovery from or for relief of symptoms of CNS injury, there are 

still many challenges in the integration of BCIs into effective prosthetic devices. These 

challenges include adequate spatiotemporal resolution in interpreting information recorded from 

the brain for naturalistic control, decoding a sufficient number of degrees of freedom to maintain 

natural movements, integration of feedback mechanisms, easing the technological support 

needed for integration of the BCI and reducing the invasiveness of components while 

maintaining the longevity of signal acquisition. Additionally, a number of recent studies have 

focused on devices contained entirely within the CNS that create artificial links between related 

areas. Here, we focus on the advantages and disadvantages of various approaches to 

interfacing BCI devices with the nervous system, based on results from both pre-clinical and 

clinical studies. We highlight the challenges associated with the implementation of high fidelity 

BCI devices to a clinical setting, possible methods for overcoming these challenges, and the 

distinction between devices that control extrinsic operations and those that control operations 

intrinsic to the CNS. 
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BCI operating modes 

When considering potential clinical interventions using neural prostheses, a convenient way of 

classifying devices is based on whether they control extrinsic or intrinsic operations. In this 

review, BCI devices that operate primarily by detection of electrical signals from the CNS are 

mainly considered, as techniques for recording other measures of CNS information (i.e. 

magnetic, metabolic) are typically unwieldy for chronic use or cost prohibitive. 
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Figure 2.1: Spatial scales of recording types. 

The resolution of each type of recording interface, as well as a selection of recent human 

studies associated with each interface is provided. Red dots represent the relative extent of 

recording interface placement, while insets demonstrate the scale and possible arrangement of 

electrodes at that site. A) Microelectrode arrays provide the highest spatiotemporal resolution, 

but must be inserted invasively into the extracellular tissue. B) Electrocorticography grids 

provide better spatiotemporal resolution than noninvasive sensors without compromising 

nervous tissue. C) Electroencephalography is the most readily-deployed in a clinical setting as 

it is noninvasive; however, the associated spatiotemporal tradeoff in signal fidelity may 

preclude its use in some applications. 

 

Control of extrinsic operations 

Neural prostheses are classified as controlling extrinsic operations when the device contains a 

decoder that records CNS signals in real-time, modifies those signals via a control algorithm 
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and outputs the translated and modified signal to a body-external device such as a prosthetic or 

robotic limb or a computer cursor. In this way the individual gains control over an artificial device 

that has the possibility to be incorporated into the body schema. 

A limitation of devices controlling extrinsic operations is that accuracy in decoding movement 

intention is typically gained through an increase in the number of recording channels (Carmena 

et al. 2003); however, increasing recording channels brings the challenge of increasing channel 

density in a particular location of interest. Depending on the type of information being recorded 

and the decoding strategy, the increase in computational burden and power required from 

adding greater numbers of channels may also become nontrivial. Likewise, increasing the 

invasiveness of the electrodes can lead to increases in decoding accuracy, but at the cost of 

increased surgical risk and potential immune response (Ward et al. 2009). Additionally, chronic 

recordings are prone to drift in intent decoding, making repeated calibration necessary. 

Although these limitations prevent the widespread use of these BCI systems in clinical settings, 

studies to date are encouraging and represent tangible evidence of the type of functional 

restoration that can be achieved using BCIs. Here, BCIs controlling extrinsic operations are 

classified into three different categories based on the electrode interface used for signal 

acquisition from the CNS (Figure 2.1). These include two invasive electrode-CNS interface 

approaches (microelectrode array recording, electrocorticography) and one non-invasive 

electrode-CNS interface (electroencephalography).  

Microelectrode array recording 

Microelectrode array (MEA) recording, used in animal models for decades, represents the most 

invasive BCI approach, as penetrating microelectrodes are placed within the brain structure 

itself, typically within the grey matter of the cerebral cortex. Though the technology was initially 

developed in animal models, a relatively small number of human studies have now been 

https://docs.google.com/presentation/d/1p3wUqyVhIdqCyozjAtWl6hmORwuFGCi6tekuAlgawaE/edit#slide=id.g9553b09fda_0_6
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conducted with implanted MEAs. Microelectrode probes can range from a single-shank 

electrode to arrays consisting of tens of thousands of recording sites.  The specific pattern and 

distribution of sites allows for dense population recordings throughout a single or multiple 

regions of interest.  MEAs allow the highest spatial and temporal resolution of any type of 

neurophysiological recording system used in BCIs (Obien et al. 2014), but at the expense of 

spatial coverage at the site of recording. The use of MEAs allows for detection of the 

extracellular electric field changes reflecting the membrane potential of the individual neurons 

closest to the tip of each microelectrode. 

While the voltage changes are quite small, neuronal action potentials, or spikes, can be 

detected within the electrical signal since rapid changes in membrane potential associated with 

the opening and closing of membrane ion channels have a characteristic temporal pattern. Due 

to their rapid onset and offset, the resulting detected spikes can be effectively reduced to point 

processes using voltage thresholding, simplifying the design of decoding algorithms, especially 

when large MEAs are employed. Further analysis using automated or semi-automated 

clustering algorithms or manual feature detection allows classification of multiple individual 

neurons recorded from a given recording site, increasing the accuracy of decoding (Todorova et 

al. 2014). It should, however, be noted that the process of detecting spikes introduces another 

source of error, with some techniques sacrificing accuracy for the sake of computational 

expedience (Rey et al. 2015).Depending on the information that needs to be obtained from 

spike trains, these errors can have a nontrivial significance (Pazienti & Grun 2006). 

Once spikes have been detected and multiple neuronal spikes discriminated (if desired), 

typically the rate of firing (i.e., spike rate) of the individual neuronal components is calculated. 

Both accuracy and ease of computational processing are dependent upon the combined choice 

of a spike rate estimator and a spike rate decoder, with simpler methods allowing computations 

to be performed on a millisecond time scale and more complex, probabilistic models limiting 
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computations to seconds or even minutes (Cunningham et al. 2009). Based on these temporal 

limitations, the practical need for real-time adaptation when implementing a BCI makes some of 

the simpler methods more attractive (Cunningham et al. 2011). To this end, it has been 

demonstrated that the use of a closed-loop, adaptive decoder can also lead to increased 

simultaneous neural adaptation, resulting in improved skill retention (Orsborn et al. 2014). 

Preclinical BCI research in animal models has typically utilized implanted MEAs chronically 

embedded in the cortex for decoding movement intention. The rationale for this approach dates 

to the 1960s when Evarts found that neurons in the motor cortex of non-human primates 

(NHPs) altered their firing patterns immediately prior to the onset of movement (Evarts 1966) 

and was later strengthened when Fetz demonstrated that neuronal firing rate could be 

volitionally controlled (Fetz 1969). More recent studies in NHPs demonstrate a consistent ability 

to decode signals to move transiently paralyzed limbs (Ethier et al. 2012), a simulated or robotic 

limb (Carmena et al. 2003, Velliste et al. 2008, Wessberg et al. 2000, Willett et al. 2013), or a 

cursor on a screen (Nuyujukian et al. 2014, Taylor et al. 2002, Wu et al. 2004), and even predict 

hand orientation with extremely high accuracy (Peng et al. 2014). 

MEAs have proven resilient in producing reliable signals from a single area over periods of up to 

a year (Flint et al. 2013). However, longevity of single unit recordings with indwelling electrodes 

has been one of the major limitations of this approach. For example, studies have shown a 

decay in signal strength over the course of 100 days (Rousche & Normann 1999), and large 

performance variability between trials and type of electrode used (Ward et al. 2009).  

Furthermore, information generated by decoders has been shown to diminish over extended 

implantations (Nuyujukian et al. 2014). This somewhat variable, and arguably short, lifetime limit 

for recording robust signals from implanted MEAs still needs to be addressed by future 

improvements in MEA materials technology. While estimates of the number of neurons needed 

to decode arm movements off-line range between 150 neurons with serial single unit recordings 
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and 600 units from MEAs (Georgopoulos et al. 1986), accurate on-line BCI control is possible 

with far fewer recorded units due to the closed-loop adaptation that occurs when learning BCI 

skills (Carmena et al. 2003, Taylor et al. 2002). This phenomenon could be a key to improving 

long-term patency of indwelling MEAs. If it is possible to use only a subset of sites to generate 

information for decoding, then as those sites slowly lose functionality it may be possible to use 

redundant sites, allowing for an extended prosthetic lifespan. 

Although MEA studies in humans are limited due to their invasive nature, recent results indicate 

the advantages of using such high-resolution paradigms. Aflalo and colleagues found that the 

decoding of spike trains associated with motor imagery in a patient chronically implanted with 

MEAs embedded in the posterior parietal cortex resulted in the smooth movement of a robotic 

limb with 17 degrees-of-freedom (Aflalo et al., 2015). Two 96-channel MEAs were embedded for 

21 months with no signs of adverse effects. The subject was asked to imagine reaching toward 

a specific goal, and channels that demonstrated preferential firing when the subject imagined 

achieving the goal were discriminated from neurons tuned to trajectory. When these goal-tuned 

units were used as tuners for accomplishing a specific task, decoding accuracy was higher for a 

given number of units. It should be noted, however, that the goal-tuned units changed over time, 

indicating that an adaptive decoder would be important for this sort of prosthetic device to be 

implemented in the future for long-term implantations. This problem of varying tuning is also 

seen in recordings from units in the motor cortex (Perge et al. 2013). 

These changes in tuning were most likely due to physiological changes in the neuronal firing 

patterns as a result of adaptation to the decoder. As the patient learns to operate the BCI, 

functional reorganization occurs in multiple brain areas, resulting from closed-loop feedback and 

adaptation to performing the new BCI-related task, and presumably allowing a smaller number 

of units to function in tuning the device (Carmena et al. 2003, Taylor et al. 2002).  The ability to 

produce a smooth movement based on the decoding of a goal-tuned unit represents a 
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significant divergence from previous studies involving chronically implanted MEAs in human 

patients. These studies used motor cortex (Collinger et al. 2013, Hochberg et al. 2006, 

Hochberg et al. 2012) as an area for control, and were quite successful; however, a noted 

limitation was that movements produced using these systems were slower and somewhat 

inflexible (Hochberg et al. 2012) when compared to natural reaching movements.  Thus, the 

ability to use a goal-tuned unit in the posterior parietal cortex as a control source for decoding 

intent using motor imagery could serve as an informative alternative to decoders focused on the 

motor cortex. 

There are several additional challenges related to using MEAs in BCIs for clinical populations.  

The insertion of MEAs into cortical tissue is an invasive procedure requiring a craniotomy and 

resection of the dura. The surgical procedure introduces a possible pathway for infection.  MEA 

implantation can lead to small-scale tissue damage that increases with a greater number of 

implants.  Glial scarring occurs at the insertion site, and is thought to be a major factor reducing 

the longevity of usable signals that can be recorded in a chronically implanted individual. 

Another major problem of chronically implanted MEAs is micro-motion, which causes the 

formation of scar tissue, leading to a decrease in the quality of recordings over time (Ersen et al. 

2015, Williams et al. 2007). Current materials research is focusing on changing various 

properties affecting the stiffness of the microelectrode, in the hope that scar tissue formation 

caused by micro-motion will be minimized (De Faveri et al. 2014). The different types of MEAs 

in use as of 2014 is reviewed comprehensively by Obien and colleagues (Obien et al. 2014). 

https://docs.google.com/document/d/1wa-qI-NkzKFn3Ewg8R05VhzDZHmwFQfu9gwC9YO0h8g/edit
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The viability of MEAs in clinical use may ultimately depend upon further advances in materials 

research (De Faveri et al. 2014, Felix et al. 2013, McCarthy et al. 2011, Tooker et al. 2012).   

 

A potential solution for MEA signal stability would be to implement BCIs that utilize somewhat 

lower-fidelity neural signals. One signal that can be acquired by MEAs is the local field potential 

(LFP). The LFP represents the summation of active cellular processes nearest the site of each 

microelectrode. While the general process of analyzing LFPs is similar to analyzing spike data, 

the computational stage and filtering is somewhat different (Figure 2.2), and some delay is 

inherent due to the latency with which changes in spectral power occur and can be measured. 

Despite these limitations of LFPs, the advantages of increased recording stability may outweigh 

the loss in accuracy. 

https://docs.google.com/document/d/1wa-qI-NkzKFn3Ewg8R05VhzDZHmwFQfu9gwC9YO0h8g/edit
https://docs.google.com/presentation/d/1p3wUqyVhIdqCyozjAtWl6hmORwuFGCi6tekuAlgawaE/edit#slide=id.g9553b09fda_0_16
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Figure 2.2: Source-dependent BCI schema. 
Differences in decoding schema depend upon neural state signal (left: LFP; right: spikes). 

Comparable stages take the same color. The green ellipse represents data as it is recorded and 

amplified from the neural source. Blue rectangles represents common filtering and processing 

steps that introduce minimal delay. Red hexagons represent potentially rate-limiting steps in 

determining the latency of the BCI response to immediate internal changes in patterns of 

neural activity. 

 

A combination of lower-fidelity LFP recordings and spike recordings might also be desirable. It is 

possible to generate predictions of the imagined single-joint movements in a tetraplegic 

individual by decoding the joint trajectory using the LFP frequency signals and multi-unit spike 

activity similarly to those predicted by decoding single-unit activity (Ajiboye et al. 2012).  Hall 

and colleagues indicate that it is possible to estimate single unit firing rates using the slow 

potentials from LFPs derived at several cortical locations (Hall et al. 2014). If this method can be 

applied to estimate the single unit firing rate of a single unit, without the need for first gathering 

spike data to calibrate the estimation, it could lead to the development of a BCI with sufficient 

longevity that still offers good spatiotemporal resolution. However, it is important to note that the 

filters used to perform the necessary calculations to deconvolve the firing rate of a single neuron 

from the low frequency LFP signals using current methods require prior knowledge of spike train 

information from multiple neurons. Furthermore, when using single-unit activity decoded from 

LFPs, there is an additional step of transforming the data during which accuracy could be lost. 

Despite these limitations, the method described by Hall and colleagues offers the added benefit 

of allowing accurate single unit firing rate predictions over the course of several weeks, which is 

an improvement on intra-day instabilities in decoding from single-unit activity itself (Perge et al. 

2013). In this way, using LFP decoders in conjunction with single- and multi-unit activity may be 

a key step in implementing long-term implants. 
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Electrocorticography grids 

Electrocorticography (ECoG) consists of a mesh or grid of electrodes distributed across the 

cortical surface that can be placed either subdurally or epidurally. This technique can detect the 

LFPs from the cortical surface at specific locations, but does not have the resolution to detect 

individual spikes. As less invasive interface approaches are used, the focality of the recorded 

signal necessarily is degraded.  What ECoG lacks in spatiotemporal precision with respect to 

individual spiking profiles, it makes up for in patency. ECoG has shown resilience in long-term 

recordings in human patients implanted for up to 7.1 years (King-Stephens et al. 2015). In 

addition, ECoG has the ability to expand the extent of spatial coverage relative to MEAs. For 

example, signals can be detected and decoded simultaneously from M1, PMd, and S1. 

Additionally, using this method, it is possible to detect not only recordings from gyrus, but also 

from the sulcal wall (Yanagisawa et al. 2009), albeit via a more invasive process. 

In humans, most studies investigating the use of ECoG for BCI applications have used clinical 

electrodes implanted in epilepsy patients for localization of epileptic foci with an electrode size 

on the order of a few millimeters and an interelectrode distance of approximately 1 cm. In 

particular, movement-related spectral power changes have been shown to occur not only during 

overt movements of skeletal musculature, but also during imagined movements (Leuthardt et al. 

2004), indicating that these spectral power changes may be useful in motor-impaired patients 

who are unable to perform overt movements. Furthermore, several studies have demonstrated 

that functionally motor-intact human patients can modulate the spectral power of ECoG signals 

to achieve on-line control of a computer cursor (Felton et al. 2007, Leuthardt et al. 2004, Schalk 

et al. 2008, Wilson et al. 2006). 
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ECoG has also been used to implement BCI devices in motor-impaired patients. A study in a 

hemiparetic patient demonstrated that it is possible to use ECoG to control a prosthetic arm 

using recordings from sensorimotor cortex (Yanagisawa et al. 2011). Additionally, the use of 

ECoG signals for control of a BCI system with three degrees-of-freedom based upon motor 

imagery of movements at multiple independent joints has been demonstrated in a quadriplegic 

patient with good signal quality for durations up to one month (Wang et al. 2013). While on-line 

BCI control in human patients with ECoG has been limited to short durations, with relatively 

large electrode sizes, arrays with sub-millimeter electrode sizes have been proposed as a 

means to obtain signals with increased spatial specificity. These micro-scale arrays have been 

utilized for online BCI control experiments in NHPs (Leuthardt et al. 2009, Rouse et al. 2013). 

Importantly, these studies utilized chronic epidural recordings, demonstrating the stability of 

ECoG signals as well as the potential to implant ECoG BCI systems on the surface of the dura, 

which would reduce the risks of infection due to isolating the implant from the subdural space. 

While closed-loop BCI systems generally have used changes in spectral power associated with 

imagined movements of a single joint in humans or high gamma power in arbitrary electrodes in 

NHPs, a more natural control algorithm may be to use signals decoded from natural movements 

or behaviors. The potential for this type of BCI using ECoG has been demonstrated by studies 

that have used ECoG signals to decode 2D movement directions in rats (Slutzky et al. 2011) 

and NHPs (Flint et al. 2012) and to continuously decode movement kinematics of 2D (Flint et al. 

2012, Marathe & Taylor 2013)  and 3D arm movements in NHPs (Chao et al. 2010). Along with 

animal models, ECoG recordings from human epilepsy patients have been used to decode 

information about voluntary movements. ECoG recordings have been used to classify 

movement directions of arm and hand movements (Chestek et al. 2013, Reddy et al. 2009, 

Wang et al. 2012). Similarly, it is possible to decode continuous finger flexion/extension 

(Chestek et al. 2013) and 2D arm and hand trajectories using ECoG with modest accuracy 
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(Kellis et al. 2012, Pistohl et al. 2008, Sanchez et al. 2008, Schalk et al. 2007), as well as move 

a cursor to an onscreen target using full neural control with no trajectory decoding (Kellis et al. 

2012). Flint and colleagues extended these findings to show that it is possible not only to 

determine trajectory, but kinetics for use in functional electrical stimulation as well using ECoG 

(Flint et al. 2014). There are also preliminary indications that ECoG in patients with stroke and 

epilepsy can be used to predict three degrees-of-freedom in arm trajectory during motor 

imagery (Nakanishi et al. 2013).  Other recent experiments have used high-density ECoG 

placed over specific areas to yield high accuracy decoding. Placement over the speech cortices 

yielded accurate prediction of vowel acoustics during speech (Bouchard & Chang 2014), and 

placement over the hand knob area in sensorimotor cortex resulted in decoding of hand 

gesturing (Bleichner et al. 2014), with high frequency signals (>65 Hz) showing the most 

accurate results. In general, it should be noted that the higher frequency signals tend to produce 

more accurate results, presumably in part because there is a shorter latency between intent and 

decoding/feedback. 

Electroencephalography caps 

EEG is the least invasive technique, but also provides signals with the broadest spatiotemporal 

coverage of the cortex. Similar to ECoG, EEG detects general electric fields that are a sum of 

the electrical activity for a given region. However, as the EEG signal detection is somewhat 

distant to the site of interest (e.g. the precentral gyrus) there is an inherent limitation to spatial 

and spectral resolution during signal acquisition. Because the voltage from a dipole falls off with 

the inverse of the square of the distance from the dipole, the extra distance between neural 

sources in the cortex and EEG electrodes causes a summation over a wider range of cortex 

(Cooper et al. 1965). The spectral resolution limitation is due primarily to the fact that higher 

frequency signals, which are more focal, tend to be averaged out by the low spatial resolution. 

In addition, high frequency activity in general is lower in amplitude than low frequency activity, 
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and can be filtered out from the inherent dampening of the bone and tissue that it must travel 

through (Cooper et al. 1965, Pfurtscheller & Cooper 1975). Finally, EEG signals are also 

susceptible to contamination from electromyographical (EMG) artifacts or eye blinks (Cooper et 

al. 1965, Wolpaw & McFarland 2004). Due to these complications, trajectory predictions using 

EEG are generally not as accurate as those using MEA recording or ECoG. 

Despite these limitations, EEG provides an excellent method for obtaining neural information 

from patients in a clinical setting without the need for surgery. EEG is also promising for use in 

acute settings that could be associated with rehabilitation and behavioral recovery, since it is 

non-invasive in nature. One of the hopes for EEG is that by using proper placement of a 

sufficient number of leads and a significant amount of prior data in healthy patients, it will be 

possible to use frequency signatures from different areas to overcome some of the 

spatiotemporal problems listed previously. As noted previously, EEG has the advantage of 

broad spatial coverage in recordings. It may be possible to turn this broad spatial coverage into 

an advantage in resolving the origin of activity in the brain. There is a large body of work in EEG 

source imaging that focuses on estimating the location of current sources for scalp 

measurements by solving the so-called static electromagnetic inverse problem. This is done 

using the collection of scalp measurements as well as a set of reasonable a priori constraints 

based on the assumed or measured physiology of the brain to determine the most likely origin 

of the current source or sources. As Michel and colleagues detail in their review of such 

techniques, such estimates depend on a number of factors, including but not limited to the 

number and position of electrodes on the scalp, the solution algorithm used to solve the inverse 

problem, and the integration of MRI data to serve as a prior (Michel et al. 2004). Recent studies 

demonstrate that it is possible to incorporate such source estimation techniques to EEG 

recordings for potential use in future BCI applications (Aihara et al. 2012, Yoshimura et al. 

2012). 



36 

Although a variety of signal analyses have been used for EEG BCI systems (Blankertz et al. 

2004), a more traditional approach has been to utilize average features of the frequency 

spectrum in relation to a motor event. A common strategy is to identify periods of event-related 

desynchronization (ERD) as a cue for some BCI output. ERD itself is a decrease in a pre-

defined spectral frequency band that can have a different physiological interpretation depending 

on the context of the task. Controlling a BCI system with ERD associated with motor 

movements has particular relevance to motor-impaired populations. Because ERD has been 

shown to occur with imagined in addition to overt movements, it is applicable as a BCI control 

signal in patient populations that are unable to execute motor actions (Pfurtscheller et al. 1997). 

The application of EEG ERD-based BCI systems has been demonstrated in normal controls and 

patient populations (Blankertz et al. 2004, McFarland et al. 2010, Pfurtscheller et al. 2003, 

Wolpaw & McFarland 2004, Wolpaw et al. 1991). While EEG is a powerful tool due to its ease of 

use and non-invasiveness, its use in BCI system development is hampered by the limitations 

described above. To date the best performance of an EEG BCI system in control of extrinsic 

operations is three degrees-of-freedom, which was only achieved after months of intensive 

training (McFarland et al. 2010). 

Although EEG-based BCI that use ERD and event related synchronization (ERS) in various 

frequency bands are common, recent work has aimed at providing a more comprehensive 

picture of changes through various power bands through the duration of a variety of tasks. 

Depending on the task, and thereby, the neural circuits involved, different signal features may 

be important at different times relative to the event of interest. A recent study identified EEG 

features in healthy subjects related to several stages of motor activities (Ramos-Murguialday & 

Birbaumer 2015). Ideally, when using EEG to control a BCI, the different components of a 

movement would have distinct feature signatures that could be detected. Indeed, in this study it 

was noted that there were distinct features during active and passive proprioception, active 
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intention, and passive involvement in motor activity. Importantly, these features were 

significantly different when performing a BCI task as compared to other motor tasks, indicating 

that decoder design must take into account changes in EEG features depending on the type of 

activity involved. 

Other less time-sensitive applications than fine motor movement may lend themselves to BCIs 

that utilize even lower frequency signals, sometimes referred to as slow cortical potentials 

(SCPs) or movement-related cortical potentials (MRPs). T In these cases accuracy can be 

added by including pre-processing steps using a variety of methods to reject false positive 

signals.  A recent study has demonstrated that it may even be possible to decode movement 

intent from delta-band (0.1-4 Hz) features, showing high accuracy in movement classification 

during a sitting-to-standing task in healthy volunteers (Bulea et al. 2014). In fact, BCIs using 

slow signals have applications even beyond motor tasks, such as allowing communication via a 

spelling device for patients with locked-in syndrome (Birbaumer et al. 1999) or even allowing 

web-browsing for paralyzed patients (Bensch et al. 2007). Another recent direction for improving 

accuracy is seen in the development of the brain/neuronal computer interface (BNCI). The 

recent distinction between BNCI and BCI devices draws on the fact that the BNCI makes use of 

other signals or current sources recorded from the body that are not located directly in the brain. 

Soekadar and colleagues demonstrated that it is possible to use electrooculography (EOG) in 

conjunction with EEG to improve use of a grasping hand exoskeleton (Soekadar et al. 2015a). 

  

Control of intrinsic operations 

Some implantable devices operate by modifying the flow of information or causing modifications 

in the functional neural networks of the brain. These devices control what can be considered 

intrinsic operations in the brain: operations that require internal transformations on information 
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related to its encoding (e.g. internal model construction or memory formation) or decoding (e.g. 

prediction or modulation of peripheral motor or sensory effectors). Devices in this category fall 

into two sets: open-loop and closed-loop stimulators. In open-loop stimulation, some form of 

stimulation is applied to a region of the brain with a frequency that is often determined using 

physiological parameters, but not necessarily correlated to the immediate activity of the brain. 

Such open-loop devices deliver a constant stream of current to the site of interest, as is 

predominant in deep brain stimulation (DBS), although recent studies have used closed-loop 

DBS for treatment of Parkinson’s Disease (PD), epilepsy, and intention tremors, as will be 

noted. There is also interest in the application of open-loop stimulation in conjunction with BCI 

therapy; however, only closed-loop devices will be considered further in this review. 

Closed-loop control of intrinsic operations 

By nature of their application in primarily remedying some sort of functional deficit to patients, 

most BCIs could be broadly considered as closed-loop devices by virtue of the feedback a 

patient receives, typically visually, from the device when using it. In this review, we will be more 

precise with the definition of closed-loop strategies, and break “closed-loop” into two 

subcategories. The first subcategory of closed-loop strategies incorporates the ongoing activity 

patterns of individual neurons or ensembles of neurons to determine when an electrical stimulus 

will be applied in another location. Therefore, a broad category of such device is any BCI 

designed to facilitate the flow of information from one region of the brain to another (Figure 2.3). 

These strategies are not driven by patient recognition of some extrinsic goal, but rather form a 

completely internal closed-loop, which may relate indirectly to a goal-motivated behavior but 

does not need to be perceived as such. For example, using this definition, a BCI with an 

extrinsic goal might be an upper extremity BCI prosthesis that reaches to retrieve an object: the 

target of the reach provides an overt goal that is perceived by the subject. On the other hand, a 

closed-loop BCI targeting an intrinsic operation would likely not be perceived directly in 

https://docs.google.com/presentation/d/1p3wUqyVhIdqCyozjAtWl6hmORwuFGCi6tekuAlgawaE/edit#slide=id.g9553b09fda_0_21
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combination with a goal; for example, a stimulator designed to provide sensory feedback by 

restoring cortical interactions between motor and sensory areas may provide sensory stimuli, 

assisting the subject achieve some movement-related objective, but the actual operation of such 

a BCI is not immediately related to the perceived goal of the subject performing the task.  

 

 

Figure 2.3: Schematic for internally-interfaced BCI 
Schematic for intrinsic operation of a stimulation device to restore function lost due to missing 

or damaged tissue. Prior to injury, the damaged area (red circle) issues output commands to 

some effector (yellow star). After injury, connections to and from the damaged area are lost 

(red elements). The stimulator (green) interfaces disconnected elements, strengthening 

functionally-related output (green arrows). 

 

In general, feedback from an applied stimulus that controls intrinsic operations is less overt, as 

electrical stimulation is generally at subthreshold levels when generating sensation or 
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movement, and measures of functional outcome are harder to ascertain on a trial-by-trial basis. 

In contrast, such feedback results in gradual changes in network connectivity, cognitive function 

or memory. This feature of intrinsic control provides an additional challenge since the network 

changes are thought to rely on Hebbian learning mechanisms, as are discussed below. While it 

is true that at the synapse such a circuit would comprise a feed-forward system, it is generally 

the case that reciprocal anatomical projections exist between cortical areas (Donoghue & 

Parham 1983, Zhang & Deschenes 1998), leading to bi-directional information flow and thus 

closing the loop. Stimulation in this paradigm requires not only a high-fidelity signal to detect 

and decode trigger events, but a highly focal, transient stimulus delivery. This is relatively simple 

when using MEAs to deliver the stimulus, but becomes more challenging when using less focal 

types of stimulation such as epidural stimulators or transcranial magnetic stimulation that 

stimulate relatively large volumes of tissue. 

In PD, it is thought that DBS can improve motor functioning by disrupting abnormal activity. To 

improve upon existing, open-loop DBS methods, one study in 8 PD patients used frequency 

characteristics of LFPs recorded from the subthalamic nucleus (STN) to determine when to 

stimulate. Since beta frequencies (13-30 Hz) are thought to correlate with impairment in PD, 

stimulating the STN only during periods of high beta activity provides an adaptive, or closed-

loop, approach to DBS (Little et al. 2013). This adaptive DBS caused a significant increase in 

subjects’ neurological scores compared with continuous or random DBS. A closed-loop BCI to 

control intrinsic operations has also been used in epilepsy patients. In a randomized multicenter 

double-blinded controlled trial of 191 subjects, ECoG electrodes were used to detect 

epileptiform activity in the recorded signal (Heck et al. 2014). Following detection of epileptiform 

activity, brief pulses of electrical stimulation were applied to the seizure focus, an approach 

known as responsive focal cortical stimulation (RNS). Subjects receiving RNS showed a 

significant reduction in partial-onset seizures after two years in the study. In treatment of 
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intention tremors, surface electrodes recording EMG activity have been used to create a sort of 

closed-loop on-demand control system for DBS that may reduce patient resistance to treatment 

by stimulation (Yamamoto et al. 2013). 

Aborting pathological activity using feedback-controlled electrical stimulation is just one 

application for closed-loop control of intrinsic operations. Another application is to facilitate 

synaptic efficacy of specific neural connections, using the natural timing of neuronal firing 

between groups of neurons. This approach derives its rationale from Hebbian plasticity theory, 

which posits that neuronal connections are strengthened when presynaptic activity is temporally 

linked with post-synaptic activity. Because synaptic efficacy changes rely on precise millisecond 

by millisecond timing relationships, approaches to investigate closed-loop control in this context 

necessarily require the highest temporal resolution possible. To date, this has been achieved 

only with MEAs recording individual neuronal spikes.  In 2006, Jackson, Mavoori, and Fetz 

showed that it is possible to modulate activity of neurons within the motor cortex based on a 

spike-dependent stimulation paradigm (Jackson et al. 2006). In this model, monkeys with 

chronically implanted microelectrodes in two nearby populations of neurons in the motor cortex 

were trained on a torque-tracking task. The two populations were tuned to different trajectories. 

However, when one of the microelectrodes was stimulated based on the spikes recorded from 

the other microelectrode, the trajectory tuning became similar between the two populations. This 

study suggested that it is possible to alter existing cortical connections by “linking” two areas 

together using closed-loop stimulation. Of added interest is the fact that these changes 

persisted even after the closed-loop period ended, indicating that it was possible to induce long-

term changes in synaptic efficacy using this paradigm. 

Extending this idea to a traumatic brain injury model, Guggenmos et al. (2013) showed that it is 

possible to restore a reaching function in rats following damage to motor cortex by linking the 

premotor and somatosensory areas using activity-dependent stimulation (ADS; Guggenmos et 
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al. 2013). In this study, a focal impact was made over the rat’s caudal forelimb area in the motor 

cortex, abolishing its ability to perform the reaching task effectively, largely due to the disruption 

in somatosensory motor integration. A recording microelectrode was implanted in the spared 

rostral forelimb area (RFA), which is somewhat analogous to the primate premotor area. A 

stimulating electrode, which was triggered by a wireless, battery-operated, head-mounted chip, 

was implanted in the primary somatosensory (S1) forelimb area. In the ADS paradigm, which 

ran continuously 24 hours a day for up to 28 days, spikes detected in RFA were used to trigger 

stimulation in S1 after a brief delay (7.5 ms). Remarkably, rats in the ADS protocol 

demonstrated a significant recovery of functional reaching behavior within a few weeks of ADS 

treatment. In conjunction with behavioral improvement, synaptic potentiation between S1 and 

RFA increased as well. Recently, a version of this paradigm has been applied to the rat cervical 

spinal cord as well, demonstrating a possible treatment mechanism for spinal cord injury, 

although the trigger signal was EMG activity and not primary CNS activity (McPherson et al. 

2015). 

There are still a number of unanswered questions regarding the effects of ADS in the context of 

neuronal pathologies. For example, it is not yet known how long the effects last, or the duration 

of the therapeutic window. Nevertheless, such a strategy of changing synaptic efficacy is an 

attractive option for use in a temporary implant because it raises the possibility of a removable 

or degradable device that only needs to function transiently. Thus, the simplicity of use of the 

device would mean a one-time surgical operation for patients, with the possibility of having a 

degradable or removable device that could then either be left in situ or explanted after 

treatment. In addition, aside from setting the thresholds for spike detection, there are a minimum 

of decoding algorithms that must be customized for individual patients, increasing the feasibility 

of such an approach in a clinical setting. 
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Other devices that control intrinsic operations have utilized a different approach. These devices 

restore cognitive function by replacing circuitry of the brain that is missing or malfunctioning 

(Berger et al. 2011, Berger et al. 2012, Bonifazi et al. 2013, Hampson et al. 2012, Opris et al. 

2012). Berger’s group demonstrated that it is possible to improve rat memory scores in a 

delayed non-match-to-sample task by implanting a device to translate spike trains detected in 

CA3 into stimulus trains in CA1 (Berger et al. 2012). Presumably, this closed-loop stimulation 

acts as a proxy for lost hippocampal function, modifying the spatiotemporal coding of the neural 

spike information in a similar way to the intact brain. 

A major remaining challenge for these types of devices is that in order to increase the degree of 

complexity of information transmitted, it is necessary to increase the number of inputs. This 

problem presents a similar challenge as in the externally operating device case in that there is a 

density limit to the number of electrode sites that can record from a given area at a particular 

time. As the number of inputs increases, the computational difficulty increases as well. Put in 

context, a 2004 study by Izhikevich that modeled 100,000 neurons with 8.5 million connections 

between them took roughly 60 seconds of computation time for every 1 second of simulation 

time (Izhikevich et al. 2004). While technology has improved substantially since 2004, it is easy 

to imagine that as the number of neurons increases the computational difficulty will increase 

quickly, too. Thus, the complexity of the cognitive task being recovered will most likely 

determine the feasibility of employing such techniques. 

As mentioned previously, a second strategy exists when incorporating closed-loop strategies for 

control of intrinsic operations. These types of devices are commonly classified as “restorative” 

BCI, as they are primarily used in rehabilitation treatments as a means to train patients to 

overcome some form of impairment. While they technically do affect some element extrinsic to 

the patient, the goal is to cause lasting intrinsic plastic changes that remedy deficits and 

eventually allow the patient to no longer need the use of the BCI; thus they are classified here 
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with the other intrinsic devices. For example, a BCI designed to reward desynchronization of 

particular oscillatory rhythms in stroke patients with corresponding proprioceptive feedback by 

movement of an orthosis demonstrated a clinically meaningful change in assessment scores of 

patients receiving the orthotic treatment against controls (Ramos-Murguialday et al. 2013). This 

type of training BCI has been the subject of much interest in the field. One direction is the 

adjunctive use of non-invasive electrical stimulation with training BCI to enhance learning by 

amplifying the ERD signal using anodal transcranial direct current stimulation (Kasashima-

Shindo et al. 2015, Soekadar et al. 2015b, Soekadar et al. 2014). Another avenue is the use of 

graded velocity feedback in response to the relative strength of the ERD signal to improve 

learning by providing improved visual and proprioceptive feedback during BCI-triggered orthotic 

movement (Soekadar et al. 2011). In this study, even stroke patients demonstrated improved 

modulation of ipsilesional activity; a similar study demonstrated evidence that this paradigm 

could lead to new voluntary EMG activity in hemiparetic patients (Shindo et al. 2011). There are 

a few case studies involving BCI for modulating intrinsic operations as well. One study used 

visual feedback for the control of excessive levels of beta band activity detected by EEG, 

providing some evidence that this paradigm could cause voluntary changes in pathological brain 

activity and improve handwriting for a patient suffering chronic writer’s cramps (Hashimoto et al. 

2014). A within-subject withdrawal design in functional EEG BCI-driven neuromuscular electrical 

stimulation showed some restoration of voluntary EMG activity in a paretic patient where 

previous rehabilitation treatments had failed (Mukaino et al. 2014). Methods of non-invasive 

stimulation that could tentatively be used with some of the aforementioned strategies have been 

proposed, but are still in preliminary stages (Soekadar et al. 2013, Wilde et al. 2015, Zrenner et 

al. 2015). 

  

https://docs.google.com/document/d/1wa-qI-NkzKFn3Ewg8R05VhzDZHmwFQfu9gwC9YO0h8g/edit
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Optimization criteria for closed-loop BCI that control intrinsic operations 

While many of the restorative closed-loop BCI devices have demonstrated substantial clinical 

efficacy, one common theme among closed-loop devices that do not fall under this category is 

that they are still farther from clinical application when compared to their externally interfaced 

counterparts. This may be, in part, because the underlying mechanisms of some of the 

internally interfaced devices are still not well understood. For example, in a device attempting to 

recreate the firing patterns connecting one region to another, what sort of simulated pattern 

would be important to use? Or in the stimulation-dependent closed-loop system, how does the 

“linkage” between the two areas occur? Before the translation of these devices to a clinical 

setting, there remains a large amount of investigation to understand the mechanistic means by 

which these devices work. Even in those devices that are closer to widespread clinical 

implementation, the neuronal substrates for improved control and use of BCIs are not entirely 

understood (Soekadar et al. 2015b). 

A large remaining area of study is to demonstrate specific features of how these internally 

interfaced devices affect changes in network connectivity. For example, a method to measure 

the putative changes in anatomical connectivity between two artificially linked areas would be to 

look at the number of projections from one area to the other in animals with and without the 

device post mortem; this provides a statistical means for comparison between groups, but is 

limited in the description of functional connectivity that may take place. Alternatively, means of 

visualizing connections in the brain such as diffusion tensor imaging has been used in rats in 

vivo (Laitinen et al. 2015), and could be employed for such a within-subject comparison study; 

however, it can be cumbersome to use such methods to map animals pre- and post- 

implantation. Additionally, implanted devices can obscure the accuracy of such data collection 

methods. 
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Rather than tracking changes in anatomical connectivity, it may be easier to track changes in 

effective connectivity directly using electrophysiological means. It is common practice to use 

methods such as finding the cross correlation over a sliding window to determine the average 

cross correlation for spike train firing in two areas in in-vitro studies (Perkel et al. 1967). This 

method has also been used in-vivo (Murphy et al. 1985), and has recently been used in 

conjunction with delayed mutual information to provide insight to the direction of connections as 

well as the specific patterns of connectivity of individual neurons (Endo et al. 2015; Taghva et al. 

2012).  Using statistical analyses such as cross correlation and time delayed mutual information 

may allow for the quantification of these effective changes over time in BCI models. 

Eventually, these methods could pinpoint the time scale over which permanent changes take 

place, or help to identify other parameters necessary for the optimization of such devices. For 

example, for the closed-loop system used by Guggenmos and colleagues to be generalized to 

multiple areas of the brain, it will be necessary to test whether the delay between trigger and 

stimulation is a general property of ADS, or if other factors such as distance and intrinsic 

connectivity between areas plays a role as well. In order to test different delay times and how 

well they change the effective connectivity between areas, having a good metric to describe and 

compare changes will be critical.  

In the section that follows, a nonlinear method used to recover the time-course of assumed 

perturbations caused to a fitted dynamical system is presented. The method was tested to see if 

it would be sensitive to changes differentiating the closed-loop method described by 

Guggenmos and colleagues from an open-loop random stimulation control in Intact, pilot rats.  
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A New Optimization Criterion for Closed-Loop BCI 

This section was presented at the 2018 International Symposium on Circuits and Systems in 

Florence, Italy. The conference proceedings paper was peer-reviewed (Murphy et al. 2018). 

Some notation has been changed slightly from the original manuscript. 

Abstract 

This study assesses the feasibility of latent factor analysis via dynamical systems (LFADS) for 

evaluating differences in the observed spiking response dynamics imposed by two electrical 

microstimulation regimes in awake rats. LFADS is a recently-developed deep learning method 

that uses stimulus-aligned neural spiking data to determine the initial neural state of each trial, 

as well as infer a set of time-dependent perturbations to the learned neural dynamics within 

trials. We show that time-dependent perturbations inferred by an LFADS model trained on 

spikes from trials on a single session can distinguish between different stimulation conditions. 

Furthermore, we use these data to exemplify how LFADS inferences track the evolution of 

stimulus-related spiking responses during chronic microstimulation experiments. 

 

Electrical stimulation has been used to drive neuronal activity and assess intrinsic neural 

connections since the beginning of neuroscience as a discipline (Leyton & Sherrington 1917, 

Penfield & Jasper 1954). Coupled with neuroanatomical studies, it enables manipulations that 

can inform us of how information propagates through the nervous system.  Stimulation-evoked 

responses are typically measured by peri-stimulus time histograms (PSTHs), which are 

essentially coherent averages of neural spiking events made possible by the stationarity of the 

neural response to electrical stimuli (Gerstein & Kiang 1960).  A major assumption in using the 

PSTH as an experimental endpoint is that the neural response to electrical stimulation will 

remain relatively stable over time and is not impacted by the activity of other neurons (Evarts 

1968, Hubel & Wiesel 1962, Cheney & Fetz 1985). New technology that allows measurement of 
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spiking from hundreds of neurons simultaneously has led to increased interest in ways to better 

characterize the potentially high-order, nonlinear interactions that may underlie computation 

integration and outputs of large cortical networks (Shimazaki et al 2012). Recently, quantifying 

neocortical network interactions has been achieved by assuming that a relatively low-

dimensional latent population code captures most of the variance in the high-dimensional 

spatiotemporal spike train data (Churchland et al 2012, Benjamin et al 2013).  Even this more 

sophisticated approach is confounded by the fact that the nervous system is plastic, constantly 

undergoing reorganization of the connections between neurons, which poses problems for 

dimensionality reduction methods that assume linear underlying processes.  Cortical plasticity 

can be manipulated by certain applications of electrical stimulation (i.e. Nudo et al 1990, 

Jackson et al 2006), further complicating the extraction of meaningful longitudinal information 

from spiking neural populations in studies that employ it.  

Many clinical and pre-clinical neurostimulation techniques to treat neurological disorders are 

based on this idea that the stimulation will alter the output properties of neurons, or that the 

population of neurons will adapt and alter their firing characteristics in response to input from the 

stimulation, as described in the previous sections. Theories of neuroplasticity are largely based 

on classical Hebbian mechanisms of synaptic potentiation, in which synaptic strength is 

increased when pre- and postsynaptic events occur closely in time.  Along with our colleagues, 

we developed a microdevice that couples the intrinsic activity of one neuron with the intracortical 

microstimulation to induce activity in other neurons. By triggering electrical stimulation in one 

brain region in response to detected neural activity in a distant region we can effectively bridge 

damaged neural pathways (Azin et al 2011a, Azin et al 2011b).  Application of this approach 

has shown behavioral efficacy in a rodent model of traumatic brain injury (Guggenmos et al 

2013). The promising preclinical functional outcomes suggest that understanding how 

stimulation alters the patterns of recorded activity over time is critical for refining this type of 
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treatment strategy (McPherson et al 2015, Capogrosso et al 2016). Given the expectation of 

shifting activity patterns, typical linear measurements and dimensionality reduction techniques 

are limited. 

An ideal analytical model needs to have the flexibility to allow and detect perturbations to the 

estimated dynamics in some subset of the experimental trials (i.e. longitudinal plasticity in the 

population response to stimulation).  We implemented the recently-developed latent factor 

analysis by dynamical systems (LFADS) approach detailed in (Pandarinath et al 2018) to 

demonstrate the feasibility of recovering perturbations to the recovered population dynamics 

around microstimulation. The trained LFADS model is able to track a shift in per-trial perturbation 

inferences around electrical stimuli that differs between two different stimulation conditions. 

Inference Model 

Overview of LFADS model 

LFADS is a deep learning method that infers the latent dynamics of processes in the brain 

under the assumption that the observed set of trial-aligned, binned spike counts are noisy 

reflections of underlying neural process dynamics. These processes are likely similar due to the 

imposed experimental conditions. In the following notation, let upper-case denote a random 

process, and lower-case denote a realization of that process. If X1:T represents the full dataset 

of m trials, 

[x1, … , xm],  

each of which consists of spike trains recorded from N units simultaneously counted over bins in 

T time steps, it is assumed that differences in data observed between trials xi and xk are due to 

1) observation noise, 2) changes in trial initial conditions (g0
i), and/or 3) time-dependent external 

perturbation(s) present in xi, but not in xk, (ui(t)). LFADS is an implementation of the variational 

autoencoder (VAE) framework, which learns and makes inferences about a set of latent 



50 

stochastic variables, Z, that represent the observed data, X, by simultaneously training an 

encoder mapping from X → Z*, and a generator that maps a reconstruction of the observations, 

Z* → X*. Ultimately, this framework should allow recovery of the compressed latent 

representation in a form that is as simple as possible, while still minimizing the error of the 

reconstruction mapping. 

 

 

Figure 2.4: LFADS inference model. 
Figure 2.4: Schematic of latent factor analysis by dynamical systems (LFADS) model for 

inferring perturbations. We are interested in the time-dependent output from RNNcon, ui(t) 

(yellow box). Observed data, Xi, are encoded to the latent stochastic representation, from 

which samples are drawn and averaged to generate a de-noised observation estimate 

represented by the dynamical factors, F. 
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In the LFADS model, the stochastic latent variables correspond to assumptions 2 and 3, such that 

Z ≝ {G0, U(t)}. The model approximates a latent representation of xi as z*i by learning the 

approximate posterior distribution, Q(Z|X). At the same time, it attempts to maximize the 

reconstruction likelihood, P(X*|X, Z*), by using two recurrent neural networks (RNNs) to 

generatively produce samples  marginalized on batches of samples drawn from  and , and 

estimating the log-likelihood based on the observed data . Both networks use the gated recurrent 

unit in order to capture sequential dependencies in the data (Chung et al 2014). The generator 

network, RNNgen, generates the reconstructed observations, while the controller network, RNNcon, 

infers time-dependent perturbations for each trial (ui(t)) that are fed to RNNgen at each time step 

as it generates samples.  The read-out matrix from RNNgen can be adjusted so that LFADS may 

be applied as a dimensionality reduction technique to extract a set of dynamic factors, F, from the 

high-dimensional spike train data. However, here we primarily consider the controller inferences, 

ui(t) (Figure 2.4, yellow box). The inferences are intrinsically regularized by the pre-specified low-

dimensional output of RNNcon, and also by a penalty term in the model loss function that increases 

with the Kullback-Leibler divergence of  from an uninformative learned autoregressive prior. This 

loss function is designed to discourage “spiky” inferred perturbations unless they help fit the data 

substantially in ways that cannot be accounted for elsewhere in the model. Large deviations in 

ui(t) may represent perturbations to the state of RNNgen during substantially “different” trials. A 

more thorough discussion of the complete LFADS model is given in (Pandarinath et al 2018), and 

the most relevant model hyper-parameters used in our study are summarized in Table 2.1.  Most 

hyper-parameters were selected to be similar to hyper-parameters in (Pandarinath et al 2018), 

which were used to recover perturbations to neural dynamics during a monkey cursor movement 

task.  

https://docs.google.com/presentation/d/1p3wUqyVhIdqCyozjAtWl6hmORwuFGCi6tekuAlgawaE/edit#slide=id.g9553b09fda_0_26
https://docs.google.com/presentation/d/1p3wUqyVhIdqCyozjAtWl6hmORwuFGCi6tekuAlgawaE/edit#slide=id.g9a88abeccf_0_0
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Application of LFADS to Stimulation Trials 

In this application of LFADS, inferences generated by the model do not necessarily correspond 

to perturbations of the underlying neural state, since a fixed portion of the observed noisy outputs 

(spikes) are necessarily obscured in each trial due to the stimulus artifact. Therefore, the LFADS 

inferences here should not be considered as relating to a set of purely physiological processes 

underlying the observed data as there is a period during the stimulus artifact when spiking cannot 

be ascertained. If every sampled trial included in training the model contained only the stimulation 

artifact at the onset alignment, the apparent suppression of activity across all observed spiking 

channels should not correspond to an inferred perturbation but rather an expected state of the 

response that would be learned by the generator network. 

To allow LFADS to learn to infer changes in observed spiking around the stimulus artifact, we 

included a subset of trials that contained stimulus pulses in addition to the alignment pulse. 

Therefore, although LFADS does not capture neural dynamics due to erroneous information from 

the stimulus artifact, it should still be able to infer changes in spiking activity around the artifact. 

This makes it a convenient tool to evaluate the timescale on which plasticity phenomena might 

be expected to occur over the time-course of a single stimulation session. If electrical stimulation 
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does not alter intrinsic neural pathways, there should be a relatively consistent evoked spiking 

response, allowing the model to fit dynamics without large inferred perturbations. Therefore, the 

LFADS model endpoints of interest are significant deviations in ui(t) during epochs surrounding 

the stimulus pulses. 

Methods 

Experimental overview 

All data used for analysis was previously acquired in a separate study that was approved through 

the Institutional Animal Care and Use Committee at the University of Kansas Medical Center. 

Rats were implanted with 16-channel polymer microelectrode arrays (NeuroNexus) unilaterally in 

premotor (PM) and somatosensory (S1) cortex (Figure 2.5a, 2.5b). Electrode locations were 

determined prior to implantation using intracortical microstimulation and sensory recording 

techniques, identical to that described in (Guggenmos et al 2013). 

 

https://docs.google.com/presentation/d/1p3wUqyVhIdqCyozjAtWl6hmORwuFGCi6tekuAlgawaE/edit#slide=id.g9553b09fda_0_31
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Figure 2.5: LFADS to infer ADS perturbations 
A) Experimental design. In the ADS regimen, detected spikes in PM trigger stimulation of S1. 

B) Trigger spikes are shown in blue, with a color bar to indicate the proportion of spikes with 

characteristic amplitude at each time sample. C) Raster plots for ADS experiment, black tick 

marks indicate observed spiking events. Spikes triggering stimulation during ADS are 

highlighted by red ellipse (right). The left raster shows a typical raster for a non “trigger” 

channel that has some evoked activity relative to the stimulus (dashed magenta line). D) Raster 

plots for OLS experiment. There is no relation of pre-stimulus activity to the stimulus, 

although per-channel activity is variable (differences in density of spiking between left and 

right rasters).  
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In vivo stimulation and recording 

Recording of PM activity consisted of 160-minute sessions including a 20-minute basal epoch 

followed by an 80-minute stimulation period and 60-minutes of post-stimulation baseline activity 

while the animal was tethered, but freely moving within a recording chamber. The PM electrode 

was connected to a recording preamplifier and S1 electrode was connected to a constant-current 

stimulus isolator (Tucker-Davis Technologies). Extracellular field recordings were obtained from 

all 16 sites in PM at a sampling rate of 24 kHz, and bandpass to provide a frequency range from 

300 to 3000 Hz. Spikes were discriminated from the filtered unit activity using a fixed amplitude 

threshold, and sorted online using PCA template matching. For activity-dependent stimulation 

(ADS), spikes from a single channel that demonstrated moderate spike activity were selected to 

trigger a stimulus pulse in a single channel within S1 after a delay of 10 ms. A blanking period of 

18 ms following the stimulation pulse was employed to limit stimulation based feedback loops, 

based on values used in past experiments (Jackson et al 2006, Guggenmos et al 2013).  In open-

loop stimulation (OLS), stimulation was delivered randomly as an approximately Poisson process 

with an average rate of 7.5 Hz, a value consistent with previous experiments and similar to that 

of the ADS group (4.1 Hz). All stimulus pulses were single 60 μA biphasic square waves that 

lasted 100 μs per phase. The timestamp of each stimulus pulse was recorded simultaneously with 

the raw extracellular waveforms. Data were processed offline to detect and cluster spikes on all 

recording channels using a combination of automated and supervised classification procedures. 

Training LFADS model for inferences 

Trials consisting of 1 ms binned spike counts over ±50 ms centered on a stimulus pulse were 

drawn from the stimulation session of two rats, one ADS and one OLS. A random subset of 2000 

trials across the 80-minute stimulation session was used for each rat.  Of those trials, 1000 

contained only a single stimulus (the trial alignment stimulus), while the other 1000 were evenly 
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divided between trials demonstrating a second stimulus either before or after the alignment pulse. 

25% of the trials were used for validation during training. The model was run in Python using the 

ADAM optimizer and learning hyper-parameters as specified in (Pandarinath et al 2018). A 

number of sweeps of the model with the number of controller outputs ranging from 4 to 10 and 

number of factors ranging between 20 and 50 were relatively robust in demonstrating significant 

perturbations on a single controller output. 

Comparisons using LFADS inferences 

After training the model, the inferences ui(t) for each trial xi were obtained by averaging 128 

sample runs marginalized on the stochastic latent representation zi*. To assess the relationship 

between model inferences  and the actual stimulation times, si, the cross correlation coefficient, 

�, between the stimulation times and the controller output ensemble average <ui> was computed 

up to a maximum lag � of 28 ms (the minimum inter-stimulus interval), as 

�i(�) = Rsu(�)/(�u�s) 

Where Rsu(�) is the value of the cross-covariance function for <ui> and si computed for lag �, 

and � corresponds to the standard deviations of <ui> and si. The ensemble average is used to 

intrinsically penalize a spuriously high controller output dimension hyper-parameterization, since 

unused controller outputs typically appeared to fluctuate around some set noise variance. The 

average cross correlation, <�>, was obtained separately for trials with single or multiple stimuli, 

as LFADS was not expected to infer perturbations due to stimulation on single-stimulus trials. To 

estimate the contribution of trial structure to <�>, shuffled cross correlations of si with <uk>, for 

each i ≠ k, of matching type (single vs. multiple stimuli) were used to compute <�rand>.  Based on 

the latency and sign of peaks in <�> (Figure 2.5), the largest deviations of <ui> were expected 

to be maxima within 20 ms of the alignment stimulus pulse, which is a long enough period to 

https://docs.google.com/presentation/d/1p3wUqyVhIdqCyozjAtWl6hmORwuFGCi6tekuAlgawaE/edit#slide=id.g9553b09fda_0_31
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account for polysynaptic activity. Therefore, the amplitude at which <ui> reached a maximum 

value was determined in epochs ranging from -20 ms to -4 ms (PRE), and 4 ms to 20 ms (POST), 

relative to the alignment stimulus pulse. The 4 ms gap was imposed to reflect the stimulus artifact 

rejection blanking period, and maintained prior to the stimulus to preserve symmetry in the 

durations of the PRE and POST epochs. In practice, similar results were obtained by varying both 

bounds of the PRE and POST epochs by several milliseconds, as long as they were maintained 

within the 28 ms blanking period. Group effects of epoch (PRE vs. POST) and stimulation regimen 

(ADS vs. OLS) were compared using two-way repeated measures ANOVA. 

                                                                                                                                            

Results 

Summary of Compared Recordings 

In total, 19,697 stimuli were delivered in the ADS recording, and 37,265 stimuli were delivered in 

the OLS recording. In the ADS recording, 43 units were isolated after manual sorting and 

exclusion of units with spikes in less than 10% of trial-aligned epochs. Typically, a few units 

were strongly correlated to one another around the time of the stimulus trigger spike (Figure 

2.5c). Using the same exclusion criteria as for ADS, 30 units were identified in the OLS 

recording. Visual inspection indicates that stimulation evokes some activity in both stimulus 

regimes (Figures 2.5c, 2.5d). 

https://docs.google.com/presentation/d/1p3wUqyVhIdqCyozjAtWl6hmORwuFGCi6tekuAlgawaE/edit#slide=id.g9553b09fda_0_31
https://docs.google.com/presentation/d/1p3wUqyVhIdqCyozjAtWl6hmORwuFGCi6tekuAlgawaE/edit#slide=id.g9553b09fda_0_31
https://docs.google.com/presentation/d/1p3wUqyVhIdqCyozjAtWl6hmORwuFGCi6tekuAlgawaE/edit#slide=id.g9553b09fda_0_31
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Figure 2.6: Cross-correlation for stimulus times 

and controller inferences. 
Grey line is the average cross-correlation of controller inferences with stimulus times from 
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random trials of the same class (single vs. multiple stimuli). Each line represents the average 

from N = 1,000 such pulses. A) Activity-dependent stimulation (ADS) with a single ICMS 

pulse. B) ADS with multiple ICMS pulses. Black line represents average cross-correlation 

coefficient for single-trial stimulus times with matched inferences made by the controller.  C) 

Open-loop stimulation (OLS) with a single ICMS pulse. D) OLS with multiple ICMS pulses. 

Correlation Between Stimuli and Inferences 

 Cross correlations of si with <ui> reveal that <�> only demonstrated peaks in the multi-stim 

trials (Figure 2.6b, 2.6d). The timing of <�max> differs in causality with respect to si, depending 

on stimulus regimen. In the ADS recording, <�max> occurs when si led <ui> by 11 ms (Figure 

2.6b), approximately corresponding to the latency between spike trigger and stimulus pulse. By 

contrast, OLS  occured when <ui> led si by a lag of 5 ms (Figure 2.6d). 

 

 

https://docs.google.com/presentation/d/1p3wUqyVhIdqCyozjAtWl6hmORwuFGCi6tekuAlgawaE/edit#slide=id.g9553b09fda_0_11
https://docs.google.com/presentation/d/1p3wUqyVhIdqCyozjAtWl6hmORwuFGCi6tekuAlgawaE/edit#slide=id.g9553b09fda_0_11
https://docs.google.com/presentation/d/1p3wUqyVhIdqCyozjAtWl6hmORwuFGCi6tekuAlgawaE/edit#slide=id.g9553b09fda_0_11
https://docs.google.com/presentation/d/1p3wUqyVhIdqCyozjAtWl6hmORwuFGCi6tekuAlgawaE/edit#slide=id.g9553b09fda_0_11


62 

Figure 2.7: Evolution of inferred perturbations. 

 
LFADS infers larger perturbations to the generator dynamics after stimuli at the beginning of 

the OLS experiment (red), but those effects diminish with time (black ellipse). By comparison, 

during the ADS experiment there are large perturbations both before and after the stimulus for 

the duration of the experiment (blue). 

 

Pre- and Post-Stimulus Controller Output Maxima 

Using the pre- and post-stimulus max[<ui
epoch>]  as coordinate pairs, a qualitative assessment of 

peri-stimulus inferred perturbations indicates a rapid change in OLS perturbations that is not 

present during the ADS recording (Figure 2.7). The two-way repeated measures ANOVA 

indicates significant effects of epoch (p = 2.0 x 10-35) and stimulation type (p = 2.0 x 10-7), and a 

trending significance of their interaction (p = 0.062). Based on the lag � at which <�max> was 

obtained for ADS and OLS, these results make sense; causality of the inferred perturbations are 

opposite with respect to the stimulus time for the two groups. The weaker interaction effect may 

reflect the relative spread maintained by ADS in terms of the controller maxima values throughout 

the experiment (Figure 2.7). 

Discussion 

Neural activity is obscured by the stimulus artifact and therefore dynamics inferred by LFADS 

during and nearby the artifact should be interpreted conservatively. However, LFADS inferences 

do correlate with electrical stimuli (Figure 2.6). This suggests that the LFADS inferences can be 

used as indicators for detecting the timescale of reorganization of network dynamics in 

response to random electrical microstimulation. For OLS, large post-stimulus inferred 

perturbations subside rapidly (within the first 15-minutes of the stimulation session; Figure 2.7). 

https://docs.google.com/presentation/d/1p3wUqyVhIdqCyozjAtWl6hmORwuFGCi6tekuAlgawaE/edit#slide=id.g9553b09fda_0_0
https://docs.google.com/presentation/d/1p3wUqyVhIdqCyozjAtWl6hmORwuFGCi6tekuAlgawaE/edit#slide=id.g9553b09fda_0_0
https://docs.google.com/presentation/d/1p3wUqyVhIdqCyozjAtWl6hmORwuFGCi6tekuAlgawaE/edit#slide=id.g9553b09fda_0_11
https://docs.google.com/presentation/d/1p3wUqyVhIdqCyozjAtWl6hmORwuFGCi6tekuAlgawaE/edit#slide=id.g9553b09fda_0_0
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By contrast, perturbations associated with ADS continue for the duration of the experiment, 

indicating that ADS may provide a more salient and sustained alteration to network dynamics 

than OLS. This difference may help explain the improvements in functional behavior evident in 

rats treated with ADS relative to OLS treatment (Guggenmos et al 2013). 

LFADS provides new options for exploring population plasticity. For example, removing subsets 

of units from the training data could be informative in interpreting LFADS inferences. Removing 

the trigger unit from the ADS training set could be a way to explore how robust the trigger 

representation is within the rest of the population dynamics.  Linearizing around the dynamics of 

fixed or slow points in the activations of the controller network, as suggested in (Sussillo & 

Barak 2013), could  provide insights into the aspects of network computations that change 

resulting from internal and external stimuli. LFADS provides a new way to study cortical 

dynamics, and may represent an important advance for relating neuroplasticity and 

neurostimulation. 

Conclusion 

An ideal high-fidelity BCI would both sample and allow stimulation of precise neural features 

non-invasively. In reality, such a combination is unlikely. Nonetheless, current work across 

several types of BCIs provides promising results for the clinical applicability of these 

technologies. Despite the positive outlook for the future of BCIs, several challenges remain 

before high fidelity recording and stimulating devices are made available for common clinical 

use. For MEA recordings, two major challenges remain. The first is to improve the patency of 

chronically implanted microelectrodes so that they can continue to be used for recordings for the 

duration of the patient’s lifespan. The second challenge is to find reliable recording sites and 

decoding algorithms that do not need to be recalibrated on a daily or weekly basis, and adaptive 
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decoders that would allow for automatic recalibration as patients learn to use implanted BCIs 

more efficiently. 

For ECoG and EEG, the challenge is less from a materials perspective, and more from a 

computational perspective. The primary goal remains similar to MEA-based BCIs: it is most 

important to find regions from which task-related information can be reliably decoded and 

translated into repeatable intent. It may first be necessary to find a means to identify reliable 

neural substrates for BCI learning using MEAs, then demonstrate that the activity patterns of 

these substrates can be reliably decoded using less invasive measures. Emerging methods 

incorporating structural and metabolic information into current source estimates may provide the 

additional information necessary to increase decoding accuracy (Aihara et al., 2012). 

Additionally, as frequency-domain based decoders improve in accuracy, it will be important to 

continue to incorporate signals with greater numbers of independent features into BCI decoders 

in order to improve the ease of adaptation for implanted patients. In ECoG, this could potentially 

be improved by optimizing location and spacing. 

In terms of decoded output, goal-tuned single units in MEA-based BCIs have shown great 

promise for decoding intent in complex movements. Meanwhile, work involving less-invasive 

approaches such as ECoG and EEG continues to improve in decoding accuracy. The future 

combination of these lines of work will be critical for progress towards increased clinical use of 

neural prosthetics. In order to demonstrate the complete neural electrophysiological basis for 

learned BCI behavior, elements from all types of recording paradigms may be necessary. Such 

an understanding may lead to new therapeutic targets for BCI devices. 

As non-invasive electrical stimulation becomes a more realistic possibility in restorative devices 

that use overt, extrinsic goals for patient rehabilitation, combination stimulation approaches may 

increase the utility and effectiveness of BCIs.  Devices controlling intrinsic operations, which 
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offer a more subtle form of closed-loop stimulation, face a different set of challenges going 

forward. The primary challenge will be to find a way to generalize their use to many parts of the 

CNS. Whether that is finding the optimal delay for activity-dependent stimulation between two 

areas, or finding the right recorded or computed pattern of neural stimulation to recreate lost 

functionality, the challenges facing internally interfaced devices are also numerous.  

Thus, the current state of progress in implementing a high fidelity BCI depends on the type of 

device. Restorative closed-loop devices for rehabilitation therapy have already demonstrated 

some clinical effect in paretic patients (Ramos-Murguialday et al., 2013), but are limited to 

treatment of patient populations that retain spared neural pathways following injury. Devices that 

control extrinsic operations have attained clinical use in the sense that they have been 

implemented in limited human trials (Aflalo et al., 2015; Hochberg et al., 2012). However, the 

practicality of such devices for widespread use remains questionable until such time that costs 

are reduced and devices made more widely available. In addition, decoders must be made 

generalizable and receive more accurate input from a higher density of sources. Completely 

intrinsic closed-loop devices offer tantalizing possibilities due to the possibility of not only use in 

motor recovery (Guggenmos et al., 2013; McPherson et al., 2015), but potentially cognitive 

therapy as well (Berger et al., 2012). Still, many important questions remain unanswered about 

these devices. Can they show reliability in animal models at a large scale? How long must such 

a therapeutic device remain in effect before clinical results are demonstrated? Thus, each type 

of device has its potential benefits and drawbacks, but importantly, an abundance of paths 

remain toward a future where BCIs are commonplace in a variety of clinical settings. 
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CHAPTER 3 

Tools for the preclinical rehabilitation engineer 

Introduction 

This chapter provides a perspective on different approaches to the study of motor control during 

movement. It also makes an argument for the utility of the systems approach in studying motor 

control and motor reorganization in a preclinical animal model of injury. The next section 

describes considerations for the use of both kinematic markers of position and metrics of neural 

activity as either the system measurement19 or system state20. A brief historical perspective 

shows why this is an important consideration. The final sections describe tools that either the 

author developed or which can be obtained freely by any investigator in order to accurately 

parse the relevant measured quantities21 from acquisition instruments.  

  

                                                
19 The terms measurement and observation may be used interchangeably. Output is slightly more 
specific, but in the systems context and particularly the Kalman formulation used in the final chapter, all 
three may be considered synonymous. 
20 The term state typically implies some value of the system which defines its behavior, but which cannot 
be observed directly and must be estimated in some fashion that requires a model of the system 
architecture. 
21 For kinematics in the reaching rat, this is the 3D world-coordinate position time-series of markers 

distributed around the paw (along the digits and wrist). For neural activity, this corresponds to the times of 
spikes in the extracellular field potential, the local field potential (LFP) amplitude, and measures of 
correlation between such endpoints. 
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Perspectives on the study of motor behavior 

According to Horak, there are three schools of thought when it comes to the study of motor 

behavior: Reflex Theory, Hierarchical Theory, and Systems Theory (Horak 1991). Horak wisely 

indicates that all three approaches are not only useful but necessary in experimental design for 

the motor systems scientist with an emphasis in rehabilitation.  

While the author agrees with this strategy, this work makes a case for Systems Theory--to the 

exclusion of Reflex Theory or Hierarchical Theory--due to the highly-specific nature of the 

measurements and experimental designs that are possible in preclinical animal models of 

rehabilitation and motor behavior. Furthermore, each of these three “modes” of thought may not 

be as different as they are traditionally described to be. Instead, Systems Theory may simply 

represent a more flexible framework for accommodating the other two modalities. 

Reflex Theory 

The original reflex theorist was none other than the famous Sir Charles Sherrington. Although 

the knee-jerk reflex22 was first discovered independently by Erb and Westphal in 1875 (Fine & 

Darkhabani 2009), the significance of this reflex arc with respect to the discovery of the 

inhibition of skeletal muscle did not occur until nearly 20 years later. In a one-page note, John 

Hughlings Jackson described the exaggerated knee-jerks and knee-clonus in a dog model of 

asphyxiation, which he speculatively attributed to the loss of excitability in the motor cortex and 

subsequent “loss of cerebral control upon lumbar centres” (Jackson 1892). In an excited 

response published less than a month later, Sherrington, who noted similar results published in 

                                                
22 Referred to as the “knee-jerk” directly in papers by Sherrington and Hughlings Jackson, this 
phenomenon is sometimes also called the patellar reflex or the knee reflex. 
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recent years in the rabbit model, described his replication of such findings in cats and macaques 

(Sherrington 1892).  

Sherrington was adamant that the knee-jerk described by Jackson bore an “intimate 

dependence on the integrity of a reflex arc,” and, critically, he observed that the fact that “the 

knee-jerk should be related to only one nerve-root is singular when one remembers that the limb 

muscles are for the most part supplied by more than one spinal nerve” (Sherrington 1892). His 

studies of decerebrate rigidity in the cat would go on to show that patterns of inhibition were 

involved in the reflex arc (Sherrington 1898). Using the decerebrate model, Sherrington 

provided many findings that remain critical to current understanding of motor control 

mechanisms, such as the description of the stretch reflex (Liddell & Sherrington 1924). During 

these studies, Sherrington pioneered the idea of reciprocal innervation: when a muscle 

contracts in order to exert the force required for the movement of a body part in an intended 

direction, an antagonist muscle that directly opposes the movement of said body part in that 

direction is inhibited (Sherrington 1909, Sherrington 1910). This mechanism is so fundamental 

to movement that even though this work implements a Systems Theory approach, the strategy 

for designing the optimization required for regressing the linearized estimate of neural state 

dynamics, which is discussed in detail in Chapter 5, is based on the assumed requirement that 

the phasic activity of such agonist and antagonist pairs must be represented somehow in the 

strongest features of the neural population state during movement. 

While the works of Sherrington revealed fundamental and ubiquitous mechanisms of motor 

control that primarily reside in circuitry organized below the level of the cerebral cortex, it is 

worth noting that the field of Reflex Theory bears necessary limitations when it comes to the 

problematic questions that behavior tends to raise. Fundamentally, since behavior is continuous 

and requires the binding of events through time, a theory of movement that relies only upon 

peripheral integration of responses to stimuli is likely insufficient to explain all manners of 
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movement, particularly those arising during voluntary and coordinated movement such as 

during upper-extremity movement. Nonetheless, the wealth of important insights that the theory 

has accounted for is a testament to the importance of dissecting a motor circuit under 

consideration in order to examine its most-basic elements. 

Hierarchical Theory 

Horak attributes John Hughlings Jackson with the first articulation of Hierarchical Theory in 1931 

(Horak 1991). In assigning that date, she cites anecdotal praises that are quoted from the 

introduction in a textbook devoted to Jackson’s teachings (Walsche, 1961). There is both good 

reason for such an attribution23 and also a certain pedagogical appeal to crediting Jackson as 

the founder of Hierarchical Theory. However, while crediting with such a thing is convenient, it is 

somewhat unfair to a developmental neurobiologist by the name of George Ellett Coghill24. 

Furthermore, such an attribution might also be unfair to Jackson: while he suggested the role of 

the cerebral cortex in movement as early as 1876, he also adamantly disavowed metaphysics 

and emphasized that he could care less about mechanisms of movement (Jackson 1876). 

On the other hand, Coghill was obsessed with such things. Over the course of his life’s work, 

Coghill painstakingly studied the nervous system of amphibians25 during development. As the 

salamander or newt larvae develops, it remains relatively motionless in its aquatic environment 

until stereotyped phases of movement emerge. The first movements are a result of reflex 

response to touch and range from slight flexion of the rostral-most muscles to an eventual “S-

reaction” reflex that serves to propel the specimen away from the source of contact. In his 

                                                
23 The Jackson quote provided in the previous section shows that the famous physician clearly 

entertained the possible role of cortex in motor control of “lumbar centres” as early as 1892. 
24 This claim is nepotistic. The fixation of both the author of this work and Coghill on neuromotor 
generation of complex movement seems to run in the family. 
25 Coghill’s model of choice was Amblystoma Punctatum, although some of his initial work was conducted 
in the Pacific newt. His research ultimately made use of several different salamander species, which may 
have been due in part to specimen availability. 
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earliest works, Coghill catalogues the progression of specimens through each of these stages in 

such extraordinary detail that he even expresses in the manuscript itself that he no longer plans 

to document future studies in this manner due to the impossibility of automation and impractical 

burden such annotation imposed on him (Coghill 1909). In a subset of experiments, when a 

specimen first produced movements corresponding to a specific developmental stage26 Coghill 

prepared it immediately for histological analysis (Coghill 1913). This enabled him to observe the 

nervous system as it developed in order to coregister as accurately as possible the generation 

of each new type of movement with comparative neuroanatomical patterns of innervation.  

It should be noted that Coghill was not only aware of Sherrington, but seemed to admire him. 

This made sense, as citing the work of Sherrington allowed Coghill to defend the use of his 

preferred model organisms. This was particularly evident in his discussions condemning a peer 

who used a fish model: while the amphibians tended to be relatively lethargic until the larvae 

reached a stage at which vigorous and stereotyped “S-reaction” was observed in response to 

cutaneous stimuli, the fish model generated poorly-described behavior that was less-

stereotyped (Coghill 1909). However, even in his early works, Coghill diverges from the Reflex 

Theorists, with discussions indicating his skepticism that all of behavior could be explained on 

the basis of “simple reflexes.” In later years, his initial descriptions of the difficult-to-quantify 

“instinct,” were replaced by the suggestion that a central “mechanism of total integration,” is 

related to motor output as it forms over the course of development (Coghill 1933). Coghill is 

perhaps most well-known for his book entitled “Anatomy and the Problem of Behavior,” which 

suggests his rejection of Reflex Theory by virtue of the interesting question it raises: how does 

behavior, which is heterogeneous and specific to individuals, arise from anatomical elements 

with such homogeny (Coghill 1929)? If constituent reflexes are expected to otherwise behave 

                                                
26 A family rumor is that Coghill kept at least one hapless research assistant on duty watching 
salamanders on a 24/7 schedule when it was required to fix the specimen upon the first sign of 
spontaneous movement. Coghill’s later works abandoned such lengths, probably due to feasibility. 



84 

similarly in response to a given stimulus, then the apparent coordination of such reflexes must 

require some “higher center” where behavior is “consolidated” or “integrated.” 

The story of George Ellett Coghill is just an example from developmental neurobiology that 

suggests each theory of motor control is not so much a distinct, cut-and-dry philosophy so much 

as a series of natural trends in thinking that arose from common interests in motor behavior. 

These trends in thought arose from different sources, which were predicated upon the field of 

study of the investigators who espoused them. While the emphasis on Coghill should not detract 

from the incredible insight and observations made by John Hughlings Jackson27, it seems more 

probable that Hierarchical Theory emerged gradually and inevitably as developmental 

neurobiologists and embryologists began to speculate about how movements develop28.  

This apparent discrepancy regarding the progenitor of Hierarchical Theory may simply reflect 

heuristics for teaching the theory of motor control. Over the entirety of the author’s education on 

the subject, which ranges from superficial discussions during high school psychology to 

graduate coursework in motor control theory, the two views were always presented as 

competing all-or-nothing theories. In Reflex Theory, it is taught, the role of the nervous system 

in motor control is strictly exerted by automatic closed-loop control of muscles and sensory 

receptors. Hierarchical Theory is then conveniently described in opposition: driven by “western 

thought” and the philosophical treatises of Descartes, the Hierarchical Theorists believed that 

nervous control of movement resulted purely from the voluntary specification of muscle 

activation patterns29 that were generated by some “integrative” central center.  

                                                
27 Even as of 2020, breakthroughs continue to suggest the role of the cerebral cortex in the simultaneous 
modulation of excitation and inhibition of agonist and antagonist pairs via its projections to the “lumbar 
centres” (Griffin & Strick 2020). 
28 Despite Coghill’s repeated arguments for the model’s significance (Coghill 1930), the author thinks that 
probably not everyone shared the same enthusiasm for the wriggling of salamanders and newts. 
29 Sometimes referred to as motor programs. The author finds this terminology a helpful heuristic, 
although it is avoided if possible in order to semantically distinguish the manner in which information is 
encoded and decoded by the brain by comparison to the digital registers of a computer. 
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Taken holistically, we see that Hierarchical Theory and Reflex Theory emerged, at least to some 

degree, in parallel. While a traditional oversimplification suggests that Hierarchical Theory only 

considers the role of the central nervous system as a generator of movement patterns, when 

context for the emergence of such a theory is given, it can be seen that this is actually not the 

case. Returning to the sage advice of Horak, it is suggested that a limitation of the hierarchical 

model, as with the reflex model, is the “inability to account for the increasingly blurred distinction 

between voluntary and reflex control” (Horak, 1991). It is hoped that this discussion provides 

some concept of why such a blurring may be apparent if on no other basis but the shared roots 

of both modes of thought. As it will be seen in the ensuing chapters, the role of Hierarchical 

Theory is felt strongly in the interpretation of these empirical data, which were gathered from the 

cerebral cortex of the rat. 

Systems Theory 

Contextualizing Reflex Theory and Hierarchical Theory is critical, because it allows the 

physiologist to understand that an argument for Systems Theory is not actually an argument 

against the other two “schools.” Instead, Systems Theory simply integrates Reflex Theory and 

Hierarchical Theory, while placing constraints on the roles of each that are grounded in 

parametric elements of the modeled system. Systems Theory subtly differs from Hierarchical 

Theory in that it does not necessarily require a fixed controller hierarchy; rather, it allows that 

movement genesis is probably related to reciprocal interactions between factors both within and 

outside of the scope of the nervous system. In the Systems Theory formulation, behavior at any 

given instant is predicated on its past and future states: neuromotor generators at multiple levels 

of the nervous system are simultaneously involved in the recursive prediction and feedback 

control required at all times for such a continuous process to propagate with stability. 
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Figure 3.1: Example measurements under consideration. 

 
Illustration of example components to be modeled under Systems Theory approach. Left: 

neural activity is recorded from electrodes embedded in approximately layer 5 (placed near 

cell bodies with descending spinal outputs) in premotor (PM; in rats this is Rostral Forelimb 

Area or RFA) and primary sensory cortex (S1). The electrodes measure the extracellular 

electrical field potential with respect to a reference site tied to a metal screw on the skull. 

Right: kinematic markers are reconstructed in 3D world coordinates using calibrated stereo 

cameras and a deep learning network trained to identify the pellet (yellow), wrist (red), distal-

to-proximal parts of the first digit (blue; white to black outlines represent distal-to-proximal 

gradient), and distal-to-proximal parts of the second digit (green). 

 

What is meant by “neuromotor generators at multiple levels of the nervous system”? 

A simple example of Systems Theory in practice is the application of the laws of physics in 

predicting the state of a limb during voluntary movement. Figure 3.1 shows the sets of neural 

and kinematic measurements that might be used during such predictions. Considering such 

measurements, we see that aside from any mathematical formulations regarding their relation, 

https://docs.google.com/presentation/d/1pWz34D-fWtHt_OERs5JmQeBt7M2NRONz3SstbYLRJI0/edit#slide=id.g9553b09fda_0_6
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an immediate and non-trivial choice in model selection is the arrangement of the system 

components in a simple block diagram (Figure 3.2). Note that the figure intentionally uses a 

black box (H) to denote any transformation (linear or nonlinear) involved in prediction. With 

respect to the laws of physics in estimation of limb position, we suspect that Newton’s laws of 

motion might be a good place to start in designing a linear matrix that relates the limb position at 

some time in the future to its present and past states (therefore, a linear system design for H in 

Figure 3.2ii might reflect such equations). 

 

 

Figure 3.2: Examples of possible Systems schema. 

Illustration of possible system model schematics. Each of panels i - iv represent a viable 

possible strategy for studying movement depending on which measurements shown in Figure 

3.1 are available. For the sake of generality, in each case, H, the filter (or alternatively thought 

of as the system transfer function) is kept as a black box, so that only the general configuration 

of measurements is considered. 

i. Neural activity measurements predict the future measurements of neural activity. 

ii. Kinematic measurements predict the future kinematic measurements. 

iii. Neural activity measurements, augmented by kinematic measurements, predict future 

neural activity. 

iv. Kinematic measurements, augmented by neural activity measurements, predict future 

https://docs.google.com/presentation/d/1pWz34D-fWtHt_OERs5JmQeBt7M2NRONz3SstbYLRJI0/edit#slide=id.g98e16389fb_0_11
https://docs.google.com/presentation/d/1pWz34D-fWtHt_OERs5JmQeBt7M2NRONz3SstbYLRJI0/edit#slide=id.g98e16389fb_0_11
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kinematic measurements. 

Note that in the last two cases, if H is allowed to vary on some timescale, then the adaptive 

weightings (matched matrix elements of H) contain information about the contribution of the 

secondary set of signals to prediction. Such information does not imply causation, but may be 

informative--particularly when very little is known about operational modes of the system. 

 

The movement of a limb during volitional behavior probably can’t be solely explained by its past 

states: behavior is a compound of smaller sub-movements. The combination of such 

movements is nonlinear, probably depends on circumstances external to the nervous system or 

the limb (e.g. reacting to an opponent while playing a sport), and involves changes in 

acceleration due to the combined contraction and relaxation of specific agonist and antagonist 

muscles in such a way as to alter the course of the limb in flight. Depending on the behavior, 

such deviations from the expectation of simple ballistic movement may be small and only most-

evident in a phasic manner30. In the context of rats retrieving pellets, the most-likely instances 

requiring cortical mediation would then be near the moment of the attempted grasping of the 

pellet, and may also occur close to toe-off or immediately following the first sniff (Whishaw et al. 

1986, Whishaw et al. 1992, Hyland 1998). It is unknown to what extent rats accurately perceive 

depth through vision, but it does not take too large of a leap in imagination to consider that, 

similar to a human reaching for a cell phone on the bedside stand in the dark, a weighting on 

neural activity relating to cutaneous sensation might also immediately precede grasping. This 

scenario is described by Figure 3.2iii. Both the present neural state and the present limb state 

combine in some way (again, allowing H to denote a generic “black box” yet to be addressed) to 

estimate the future neural state. As the neural state estimate of the limb state draws nearer to 

                                                
30 The engineer is recommended to take this as a first principle, regardless of the behavior! Due to 
probable bandwidth limitations on filtering in the cerebral cortex, it would be wasteful (and probably 
evolutionarily disadvantageous) if the cortex had to attend to every single aspect of a movement. The 
more that a movement could be offloaded to mechanisms not requiring attention, or even better--not even 
under nervous control at all but simply a product of mechanical properties of the system once the limb 
reaches a threshold state--the more that cortex might focus on other more nuanced parts of behavior or 
otherwise. Gait is an excellent example of such a case (Craig et al. 2016).  

https://docs.google.com/presentation/d/1pWz34D-fWtHt_OERs5JmQeBt7M2NRONz3SstbYLRJI0/edit#slide=id.g98e16389fb_0_11
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the pellet, the expectation of cutaneous contact increases. Distinguishing between activity 

related to the estimation process, and activity that occurs in anticipation of cutaneous contact 

would be a critical component for experimental design in this context: a behavioral task in which 

motor output can be executed in both the presence and absence of the hypothesized dominant 

sensory strategy would provide a causal manipulation that could help distinguish such a thing. 

Unfortunately, rats tend to spend an inordinate amount of time grooming the digits and forelimb 

once topical lidocaine is applied; it is noted that a habituation strategy in which the rats gradually 

acclimate to the lidocaine application has not been tested. 

Systems Theory helps identify necessary “pre-experiments” during experimental design. 

It is most helpful when biologists and engineers collaborate prior to the collection of 

experimental data, so that an interesting hypothesis is not rendered useless by missed 

considerations during experimental design. Returning to the previous example of the rat 

reaching to retrieve pellets, consider the case in which only the neural data and not the 

kinematic reconstruction is available. This means that the investigator is forced to use the 

design illustrated in Figure 3.2i. It becomes difficult (but not impossible, as is shown in Chapter 

5) for the investigator to derive an objective metric of error that relates to a measurable 

component of the behavior aside from the use of functional outcomes as a binary regressor. 

Clearly, the optimal alternative is illustrated by Figure 3.2iv: for example, if the filter is allowed 

to adapt in relation to some error term over the course of each trial, then perhaps the 

speculative “re-weighting” on cutaneous sensation mentioned previously is evident in the time-

series of the relevant filter matrix coefficients. This generates a meaningful conversation 

between the biologist and the engineer: what is a meaningful error term in this situation? A short 

discussion may lead the biologist to the realization that he or she has already collected a wealth 

of publishable material. A simple empirical characterization of the process noise that occurs at 

both an individual and cohort level during the thousands of pellet retrievals that naive, Intact rats 

https://docs.google.com/presentation/d/1pWz34D-fWtHt_OERs5JmQeBt7M2NRONz3SstbYLRJI0/edit#slide=id.g98e16389fb_0_11
https://docs.google.com/presentation/d/1pWz34D-fWtHt_OERs5JmQeBt7M2NRONz3SstbYLRJI0/edit#slide=id.g98e16389fb_0_11
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perform while being trained to proficiency would have significance for future investigators using 

the reaching rat model to a variety of ends. 

Similarly, to avoid an overly-elaborate model31 that unduly emphasizes error terms which don’t 

matter, the target model should be confirmed by all parties from the outset. The alternative is 

that the engineer begins to fret about “getting it wrong.” Constraints imposed by measurable 

tissue properties of the effector limb, such as the viscoelasticity of muscles and tendons, might 

make the model more realistic; the engineer does a literature review and finds plausible values, 

inserting more terms and equations. The engineer begins to agonize about digit marker 

reconstructions that violate range-of-motion constraints. Each newly-conceived noise source 

haunts the engineer’s dreams until addressed. Unfortunately, after countless hours spent on 

writing new code and tuning model parameters, which require waiting for the increasingly 

burdensome calculations to complete, it is found that the model only offers minimal or no 

improvements in accuracy with respect to the metrics of interest.  

Instead, a simple conversation with a physiologist might have indicated that treating the digit 

markers as a “cloud” of noisy points about some centroid was sufficient for the correlative 

purposes to which it would be used in the model. Unfortunately, the physiologist who has not 

done the no-nonsense experiment characterizing process noise during reaching could not 

provide such intuition. It is also noted that, once again, such a discussion could generate other 

more meaningful and purposeful uses of the engineer’s time: is it possible to simulate bounds 

on how the magnitude of such measurement noise could impact a model, and specifically, 

which parts of the model might be most-affected? Are there features of both the neural signal 

                                                
31 As model complexity increases, interpretability decreases: in the case of the most-complicated 

nonlinear dynamical system estimates (such as the metric described at the end of last chapter; Murphy et 
al. 2018), it may become altogether impossible to derive useful intuition from results. In other instances, 
key constraints are missing such that the oversimplified procedure for recovering system coefficients 
leads to converged endpoints with no basis in reality.  
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and the reaching movement of the limb that cause this behavior to become more robust to 

noise; and if so, when do they occur? 

As a final point, hopefully at least one party in the collaboration already has application-specific 

knowledge. In this case, it is the job of that collaborator to provide specific parametric values; 

this should take the form of (preferably) summary statistics from past data or else a best-guess 

estimate based on clearly-stated assumptions. The use of fixed constant parametric values 

often simplifies the system identification problem, which as it can be seen, can be readily made 

over-complicated. An immediate practical benefit of providing such values is that their suitability 

for use in models can be tested: this not only gives the model the best chance of providing 

useful insight, but when conducted correctly, such tests almost always yield empirical results 

that are publishable in their own right, as shown in the next chapter (Murphy et al. 2019). 

 

Figure 3.3: Limb state relates to muscle contraction. 

The limb state is an approximation of the muscle co-contractions and relaxations of interest. 

Because it is technically quite challenging to obtain accurate electromyographical (EMG) 

readings from the rat forelimb even when the wires are inserted in the anesthetized preparation, 

direct measurement of the limb state is difficult in this model. Aside from the nontrivial issue 

of targeting the fine forelimb muscles (and subsequently hoping that this does not impair the 
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behavior), without proper precautions the rat is likely to remove such wires during grooming. 

Realizing this, the next-best option to direct EMG recordings is to record positional markers 

along the limb, which offer informative degrees of freedom with respect to movements 

generated during the behavior of interest. For example, markers on the tips of the digits would 

be of interest during digit flexion such as during grasping; the wrist may be interesting as a 

more proximal marker and “central” landmark for the others. 

 

What is the system state specifically? 

In the context of motor systems and strictly considering voluntary upper extremity limb 

movements, the system state comprises two state variables that the investigator typically 

wishes to relate in some way: the limb state and the neural state. When the limb moves from a 

resting position, or deviates from its ballistic trajectory in some intended manner, it requires the 

exertion of force in proportion to its mass and the amount of acceleration that is to be applied 

during such a change. With this in mind, the limb state must be defined as the combined 

electromyographical (EMG) activity of the muscles pertaining to movements of the effector limb 

of interest, as shown in Figure 3.3. The neural state is the combined activity of all nervous 

elements and is therefore never completely observed due to the limits of what is feasible to 

record from the nervous system given current electrode technology. In the narrower context of 

these experiments, the neural state is estimated in relation to processes of interest relative to 

the behavior; with respect to the sensorimotor areas of the cerebral cortex, this means that it is 

activity of neurons related to the filtering of input sensory measurements, prediction of future 

sensory inputs, prediction of the current state of the effector limb, and output command signals 

to the motoneuron pools and modulatory spinal interneurons (Figure 3.4). 

https://docs.google.com/presentation/d/1pWz34D-fWtHt_OERs5JmQeBt7M2NRONz3SstbYLRJI0/edit#slide=id.g96c772db5c_0_212
https://docs.google.com/presentation/d/1pWz34D-fWtHt_OERs5JmQeBt7M2NRONz3SstbYLRJI0/edit#slide=id.g96c772db5c_0_229
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Figure 3.4: Neural state is task-specific and never 

observed completely. 
The neural state is the combined activity of neurons in the nervous system which relate in some way to 

the filtering of motor information and generation of subsequent motor output. A) The neural “unit” is a 

characteristic spike that corresponds to the generation of an action potential by a single neuron 

(concentric circles denote that the amplitude decreases proportionally with the square of distance from 

the cell). The term “unit” refers to both the spike and the cell generating it: when represented as a point-

process, the spike is typically denoted mathematically by shifted sums of the dirac delta function, (t), 

which is infinitesimally narrow, has infinite amplitude, and integrates to have unit area. While it is 

impossible to accurately identify actual single-unit activity from extracellular recordings of cortical 

cells during behavior without dense spatial arrays that enable the spatial triangulation of individual 

spike sources, “multi-unit” cortical activity appears to contain robust movement-related information. B) 

In this context, the neural state relates to the rat as it reaches to grasp and retrieve a pellet. Given that 

recordings are made from cortical units, the neural state under consideration is really the input and 

output filtering related to voluntary aspects of the reach-to-grasp maneuver. As shown by the non-

neural noise sources, denoising the neural state is a non-trivial technical challenge, and failure to 

adequately do so not only generates erroneous results, but ones that are potentially misleading in that 

they may be conflated with biological noise sources that are behaviorally-related but not generated by 

the nervous elements under experimental manipulation. 
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Origins of a muscle-based limb state. 

The subject of whether the limb state should be considered with respect to the muscular 

production of force or the position of the limb itself is somewhat controversial in motor systems 

neuroscience. In the late 1960’s, a remarkably dedicated investigator by the name of Edward 

Evarts conducted a series of experiments in macaques trained to conduct a stereotyped hand 

movement, which would be formative in shaping the understanding of those studying the role of 

cerebral cortex in voluntary movements (Evarts 1966). Evarts recorded the extracellular field 

potentials from single electrode recordings taken from Layer 5 of the motor cortex contralateral 

to the arm during a task requiring the monkey to flex and extend its arm in order to receive a 

juice reward. He related the timing of behavior elements such as movement onset and force 

generation to the timing of activity generated by presumptive cortical pyramidal tract neurons 

(PTN) thought to project to the spinal motoneuron pools. He noted that the onset of PTN activity 

typically preceded EMG or movement onset. In a separate experiment, Evarts changed the 

force required to conduct a movement (Evarts 1968). He was able to identify PTNs that 

modulated activity on the basis of the load required by the effector: when flexion was opposed, 

the rate of PTN spikes (action potentials)32 increased; when extension was opposed (i.e. flexion 

was facilitated), hardly any spikes were observed from the same PTN.  

Later works that relied upon precisely summing snippets of rectified EMG waveforms (spike-

triggered averages) based on the timing of detected PTN spikes strengthened the finding that 

PTNs directly modulate EMG output (Fetz & Cheney 1980). If such snippets demonstrated 

ergodicity on short timescales relative to a coherent event (i.e. the trigger spike), phenomena 

                                                
32 Spike detection in those days was considerably more challenging than it is today: most acquisition 

circuits still primarily consisted of analog components. Today, digital amplifier chips that scale 
programmable hardware filters to tens or hundreds of channels simultaneously are relatively inexpensive. 
It is also standard for acquisition circuits to facilitate synchronization of digital or analog logic from other 
circuits via (typically 5-V TTL) BNC ports. 
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such as “post-spike facilitation” might be seen as the bias over many averaged trials toward an 

increase in the rectified EMG at some latency relative to the spike. These biases are presumed 

to relate to the movement in a similarly coherent manner. The systems engineer should note 

that these averages are correlative; however, the model is predicated upon important 

calibrations that suggest the causality of PTN activity in this case. Specifically, the measured 

conduction velocity and estimated synaptic delays correspond to the latency between spikes 

detected from PTNs and the onset of average EMG increases (Cheney & Fetz 1980). Evarts, 

who was so dedicated to his work that he actually passed away while still in the laboratory, 

confirmed the identity of putative PTNs using antidromic stimulation33 in the medullary pyramids 

(Evarts 1969). Collectively, these works suggest the significance of considering any metric of 

limb state that is derived from position in light of the underlying physiological engines that exert 

the forces required to engage in allowing the limb to reach such a state to begin with, 

particularly when considering the voluntary control of movement at the level of cortical neurons. 

Limb position, population dynamics, and rise of the neural state 

In 1982, not long after the studies of Cheney and Fetz refined the works of Evarts using 

coherent averages, a new perspective regarding the neural state34 emerged in the works of 

                                                
33 Action potentials are conducted toward the axon terminal (end of the long projection, typically where it 
synapses onto some target) by orthodromic ionic currents. However, extracellular injection of high-
frequency current pulses tends to preferentially recruit axons due to their lower effective capacitance 
compared to the soma (cell bodies). When recruited in a non-natural way, the current flow spreads away 
from the point of recruitment so that antidromic stimulation refers to currents carried back up the axon 
toward the cell body. This property is manipulated by electrophysiologists: antidromic stimulation in the 
medullary pyramids, where the bulk of the descending corticospinal fibers cross, at a latency 
corresponding to the arriving orthodromic nervous impulses causes a “collision” that silences the typical 
output. While potentially informative, such a technique is not without its own issues in interpretation 
(Fuller & Schlag 1976). 
34 This is often taught as a debate, although maybe this is only because of the deliberately provocative 

Introduction provided by Georgopoulos in his 1982 paper, coupled with his refusal to acquire or provide 
electromyography (EMG) measurements despite a Results section entitled Other observations, which is 
clearly a response to requests by a peer, in which cell discharge in response to muscle contraction is 
mentioned. Observations by both groups tend to otherwise align. The muscle-centrists acknowledge that 
only a small fraction of cortical cells demonstrate the properties they describe, while the movement-
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Apostolos Georgopoulos (Georgopoulos 1982). Georgopoulos suggested that when the task 

paradigm shifted from a simple flexion-extension behavior to a “two-dimensional movement” 

that neural activity in the monkey motor cortex correlated with limb position. Subsequent 

collaboration with Ronald Kettner and Andy Schwartz resulted in a series of three important 

articles published in Journal of Neuroscience in 1988 elaborating upon these findings (Schwartz 

et al. 1988, Georgopoulos et al. 1988, Kettner et al. 1988). Schwartz generalized the prior 

findings from individual unit activity to decoding in three-dimensional space, Georgopoulos 

described a resampling procedure for use with a database of all units (recorded one or few at a 

time, as allowed by each electrode insertion) in which subsets of units were combined to 

regress a population vector of neural responses, based on their weights and “preferred 

direction,”35 and Kettner attempted to recover a 3D phase space for spike rates as well as 

whether the population vector followed parallel trajectories when movements were initiated from 

different initial positions.  

In hindsight, it seems that Georgopoulos (particularly in his 1982 study) may have wanted to 

oversell the significance of his findings: for example, his conjecture in the Discussion section 

that the orderly recruitment of spiking activity in response to a preferred direction represented a 

generalization of Evarts’ findings is just not true. In 2015, Griffin & Strick showed what 

Georgopoulos might have if he had taken his peers’ recommendation to acquire EMG 

recordings synchronously with the cortical and movement records: corticomotoneuronal cells 

are functionally tuned during motor behavior. Furthermore, a recent 2020 study by Griffin 

provides a key observation based on neuroanatomical arrangement: corticospinal cells play a 

                                                
centrists allow that a majority of cells in the motor cortex lack direct descending spinal projections to 
motoneuron pools. When posed as a problem of model specification, the point of contention becomes 
clearer: should the hypothesis model assign the neural state as output, or is the output the limb state? 
Since brain and behavior form a chaotic, recursive system, the answer will always remain: the correct 
model output depends upon the question to be tested.  
35 “Directional tuning” equations similar or identical to the one presented by Schwartz (Schwartz et al. 
1988) are a hallmark of the center-out reaching task. All such tuning procedures essentially recover 
coefficients that relate the number of spikes acquired during each trial to its direction. 
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dual role in “sculpting” movement via combinations of axonal terminal targets arising from the 

same pyramidal cell body. Excitatory synapses onto agonist motoneuron pools are coupled with 

excitatory synapses onto inhibitors of antagonist motoneuron pools, providing an intrinsic 

mechanism to prevent agonist/antagonist co-contraction. 

Despite this, the grain of truth (or perhaps the honest question) behind Georgopoulos’ early 

work36 excited the field and resulted in the future collaboration with Kettner and Schwartz that 

continues to influence the thinking of engineers developing brain computer interfaces to this 

day. While the 1986 experiment of Georgopoulos asked: “does the weighted population spike 

rate preferred direction reflect the movement direction on a given trial,” it is actually the Kettner 

paper37 which offers the specific formulation describing “discharge rate of a single cell” as a 

weighted sum related to hand position. To emphasize this semantic distinction and why it is 

critical: consider that in sensory systems, it is much more straightforward to pose the question 

this way since the stimulus is causal with respect to the observed neurometric response curves.  

However, although tuning curves were already described (suggesting that the formulation for 

considering neural state existed in the motor systems “toolbox”), the works of Evarts and his 

students, while incredibly important, were necessarily limited by the emphasis placed on 

pinpointing precise system outputs in the form of pyramidal activity related to muscle activity. 

Knowing that output cells exist and the general form of their neuroanatomical arrangement and 

timing with respect to behavior is extremely useful information. However, the view is inflexible in 

that it refuses to acknowledge the possibility that the brain does other things than generate 

movement. In years following the 1988 trio of papers, the reformulated approach to motor 

systems neuroscience allowed the elaboration of new questions, such as whether both hand 

                                                
36 Which is specifically: what exactly are all these other cortical cells that do not have descending output 
projections doing during behavior? 
37 Probably specific to the author’s graduate studies, but Kettner for whatever reason seemed to come up 
less frequently in conversation than Schwartz or Georgopoulos. 
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position and velocity explain spike responses observed from the contralateral motor cortex 

(Moran & Schwartz 1999).38  

Considerations regarding system architecture 

Which state initializes the system? What is the input? 

Between 2004 and 2006, Wei Wu and colleagues found a resolution to the evident controversy 

regarding whether the limb state encoded the neural state or was decoded from it. In the 

description of their solution, Wu cites the hypothetical problem identified by Zhang and 

colleagues in 1998. The problem is actually quite a simple one: suppose two units exert some 

control over movement on a hypothetical and idealized 2-dimensional plane. Unit A drives 

muscles that cause movements in the direction “up”. Unit B drives muscles that cause 

movements in the direction “right + up”. Weighted summation of the impulses caused by each 

unit results in some direction that is intermediate to “up” and “right + up.” Then the apparent 

“preferred direction” of both A and B will result in a reciprocal basis with respect to the driving 

directions: A will appear to prefer the direction “left + up” and B will appear to prefer the direction 

“right”. This result is simple algebra that relates to the definition of unit tunings (see Zhang et al 

1998, Fig. 4 and associated section Simple example of reciprocal basis for details). The only 

case in which the preferred and driving directions are equivalent is when the driving directions 

are orthogonal.  

These predictions, which could have been made with pen and paper, were reflected 

experimentally by the work of Moran & Schwarz (1999), and later by the findings of Griffin 

(2015). Realizing that this meant that a brain computer interface (BCI) decoder with a basis that 

depended on the recovery of unit tunings was impractical, Wu implemented efficient variants of 

                                                
38 Regression relating spike rate to movement speed and velocity captures a large portion of the 
fluctuations in spike rates. 
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the Kalman filter (generalized in a flow chart diagram in Figure 3.5). For example, the model 

could be calibrated for use on a 2-dimensional pinball tracking task fairly accurately using only 

2.5 minutes of data (Wu et al 2006). Notice that in Figure 3.5, there really isn’t a “system input;” 

rather, the system is initialized at some initial state and runs perpetually. Further discussion of 

the Kalman filter is provided in Chapter 6. 

 

Figure 3.5: The ambiguous “input.” 
Due to the recursive nature of neural activity, it is challenging to abstract the correct part of the system 

to consider as an input. This relates to the unresolved issue of temporal binding of behavior in 

neuroscience; at a very high-level, most experiments ask questions that address very specific stimuli, 

their associated behavior, and neurophysiological or neuroanatomical correlators related to the response 

of interest. In order to use predictive models that relate temporal encoding and decoding of neural 

signals to the response of interest, there is a necessary calibration for setting good model parameters 

such as initial conditions that accurately allow a given model to reconstruct the response. The quantities 

used for calibrating the initial conditions (in this case, multi-unit spike rates occurring prior to lift and 

extension of the reaching forelimb) are the “inputs;” however, since the system must affect its own 

future state by necessity, this means that the whole thing becomes a recursion, as demonstrated by the 

Kalman formulated shown above. The formulation can be applied by the engineer in different ways to 

generate statistically optimal noise estimates (cyan, yellow, or blue Gaussian distributions) depending 

on the predicted output. With respect to the biology, the brain applies a predictive filter (red block) as 

shown in Figure 3.2b while issuing output commands (green block); the output is measured and values 

of its past state are incorporated to the prediction (blue block). This process repeats itself (grey dotted 

arrow) as the filter influences the future motor command and the movement proceeds continuously 

through time. 

 

https://docs.google.com/presentation/d/1pWz34D-fWtHt_OERs5JmQeBt7M2NRONz3SstbYLRJI0/edit#slide=id.g96c772db5c_0_125
https://docs.google.com/presentation/d/1pWz34D-fWtHt_OERs5JmQeBt7M2NRONz3SstbYLRJI0/edit#slide=id.g96c772db5c_0_125
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When is the neural state estimate adequate? 

As was mentioned, the true neural state, which describes the simultaneous activity of all the 

nervous tissue related to the task at hand, is probably never measured. However, there are 

reasonably straightforward methods to check if the estimate is adequate. Ultimately, any such 

strategy relies upon the decomposition of the neural data into orthogonal bases in a high-

dimensional space, where each dimension corresponds to a different spatial channel. There are 

many such decomposition methods, and describing them all is not the purpose of this section, 

but to name two: principal components analysis (PCA) is popular due to its speed and linearity 

(Chapin & Nicolelis 1999); or, particularly when EMG and muscle synergies are involved, non-

negative matrix factorization (NNMF) may be appropriate (Ranaldi et al 2018). Note that 

interpreting features that relate to this decomposition depends upon marginalizations performed 

on the data prior to the decomposition step: for example, it may be necessary to strictly 

decompose the components of only highly-stereotyped behaviors. This is done by curating the 

behavioral dataset (e.g. watching each trial video) to make sure that behavior proceeds as 

expected.  
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Figure 3.6: Concurrent state and observation variables. 
As spatial channel counts increase, with respect to the behavior under consideration there is likely redundancy in 

linear relations between the observed neural data and the output behavior. (Left) Prior to regression using the full 

trial-aligned spike rate time-series, the neural data is compressed to its most-salient population-level “factors” 

(here: using non-negative matrix factorization; often: using PCA or ICA). (Right) even after compression, the 

first-order dynamics represent a system with multiple inputs and multiple outputs (MIMO). (Inset) The abstracted 

filter and its estimation procedure. Each dark grey box corresponds to one of C compressed factors representing 

the multi-unit spike rate population state. The  Z-1 block represents a single-sample delay, which is used to fit 

multiple least-squares regression by minimizing the residual error squares (A~[t+1]; red arrow denotes 

minimization process, which determines k0,i through kC,i for factor i). The filter output predicts the future state of 

each neural factor using weighted sums of the current value of each factor (coefficients in white triangles). It is 

not uncommon that between 6-12 “factors” explain the majority (more than 95-99%) of the multi-unit rate 

population state when using a 32-channel recording array. For comparison, if each channel were observed due to 

independent and normally distributed processes (i.e. purely due to noise), the corresponding expectation on the 

percent of data explained would be approximately 18-36%. 

 

After the data has been decomposed to a new basis, resolving the question of is this an 

adequate sample depends on the model prior regarding limb state: how many meaningful 
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dimensions do we expect the limb state to take? More specifically, how many dimensions of 

freedom do we expect in the movements required of the behavior (since movements are likely 

to covary along different world-coordinate axes, and markers at points along the body are 

intrinsically correlated)? Past work suggests that between 6-12 dimensions are sufficient to 

account for behavior during a unilateral upper-extremity movement (Churchland et al 2007, 

Churchland et al 2012). Once the target dimension has been selected, this choice can be used 

either to reduce the basis to its top components (PCA), or to set the number of factors during 

the decomposition (NNMF; Figure 3.6 left panels). In both cases, the accuracy in regressing the 

reduced data onto its original values should be used to assess whether such a decomposition 

makes sense. As a heuristic, one strategy is to simply specify that at least 95% of the original 

data must be explained by the reduced factors, and then use the corresponding number of 

principal components or iteratively determine the number of factors for NNMF. Once the factors 

are recovered, they can be used for prediction of either the future neural state (i.e. future factor 

values; Figure 3.6 right panels), or the future limb state (for example, relating to independent 

sensory and motor factors for prediction as shown in Figure 3.7). 

https://docs.google.com/presentation/d/1pWz34D-fWtHt_OERs5JmQeBt7M2NRONz3SstbYLRJI0/edit#slide=id.g98e16389fb_0_64
https://docs.google.com/presentation/d/1pWz34D-fWtHt_OERs5JmQeBt7M2NRONz3SstbYLRJI0/edit#slide=id.g98e16389fb_0_64
https://docs.google.com/presentation/d/1pWz34D-fWtHt_OERs5JmQeBt7M2NRONz3SstbYLRJI0/edit#slide=id.g98e16389fb_0_103
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Figure 3.7: A more complicated realization. 

Returning to the Kalman formulation of Figure 3.5, an attempt to reverse-engineer the likely 

sources of actual biological computation begins to quickly complicate the model. In Chapter 

6, some simplifying assumptions are made: for example, the S1 sensor computed by M1 is 

instead just included to the neural state variable as the cross-correlation between the M1 and 

S1 mean LFP signals based on preliminary results indicating this as a good choice that were 

obtained from the anesthetized rat subjected to cutaneous solenoid stimuli of the distal 

forelimb. 

 

Note that such estimates form a useful prior on how many electrodes might be sufficient for a 

given experiment, which is not only dependent upon how many task-relevant dimensions are 

expected, but also the spatial correlation and desired spatial resolution for sampling the brain. 

Depending on how correlated the neural signals will be: as electrodes in the brain are placed 

more closely together, they become more likely to detect similar or identical signal sources 
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(cells); with a site spacing of 250 �m, 32 channels distributed across bilateral motor areas was 

observed to be sufficient (Chapter 5). Other configurations, such as the array designs that are 

possible when using commercially-fabricated flexible polymer-based electrodes (i.e. 

NeuroNexus), which allow site spacing on the order of 100-150 �m, may require even higher 

channel counts. 

 

Figure 3.8: A consideration regarding critical difference 

between brains and computers. 
A key conceptual point is that the brain is different from a computer. In a digital architecture (left group), 

information storage and retrieval is typically achieved in some fashion using logical operations (i.e. transistor 

state; top-right inset). Stable data storage typically involves the use of “latch” architectures (not shown); when 

such an operation occurs, the field potential of the transistor will always converge and remain in a single fixed 

point, which is meaningful in that context (stable node). In neural architectures (right group), temporal 

propagation of highly volatile membrane potentials of individual neurons and the related stochastic generation of 

action potentials is necessarily erratic, even in relation to an event that makes the expectation of “relative” 

stationarity more likely (i.e. motor behavior; top inset: 95% confidence bounds of spike counts aligned to grasp). 

For neural networks, the physical realization of a system that encodes information requires transient convergence 

to trajectories that “fleetingly” orbit some fixed point (center pendulum example); while analysis is limited by 

statistical power to focus on transient behavior, it is most likely that such behavior carries its “momentum” into 

subsequent fixed point orbits, allowing propagation of coherent activity (right pendulum example; major and 

fundamental unresolved problem in neuroscience at large).  
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Model selection should address the appropriate neural state code 

A benefit of Systems Theory is that the model can generate meaningful qualitative descriptions 

of behavior that necessarily depend upon model architecture. At the risk of pointing out the 

obvious: information that is filtered by neurons in the brain is necessarily stored and retrieved in 

a different way than it would be in an architecture of interconnected transistors. The latch--a 

common logical arrangement scheme for stably encoding and manipulating the binary state of a 

single transistor--cannot function the same way in a neuron as in a transistor. Figure 3.8 

illustrates this. The transistor encodes states through the use of semiconductors: a voltage 

across the semiconductor changes its resistance and thereby allows or disallows the flow of 

electrical current. If we focus on the state of the transistor around some encoding event39 in 

which it is desired for the transistor to move to the state “0” in which no current flows, then 

regardless of the prior state of the transistor, we can manipulate the system40 so that the state 

“0” will be held for any arbitrary amount of time (Figure 3.8, left). Similarly, a known 

manipulation of the system can reliably change or hold the value of the transistor state to “1.” 

On the contrary, the membrane voltage of the neuron is in a constant state of flux. If we 

consider the neuron as a unit41, then the topology of its state space is approximately 

comparable to the transistor. However, since the neuron will only ever transiently hold the state 

“1,” it should be clear why a latch scheme cannot work the same way in neurons as in 

                                                
39 For example, a register holding the value of an infrared sensor might take the value of “0” when the 
beam is broken, indicating the presence of an object such as a pellet in some target location; a value of 
“1” would indicate an unbroken beam--that the target is no longer present in that location. 
40 In an N-P-N transistor as shown in Figure 3.8, this corresponds to changing the voltage between the 
base and ground. 
41 This means we reduce all properties of the neuron so that we create a binary state that takes a value of 

“0” most of the time when the membrane voltage of the neuron at the axon hillock is below a threshold, 
and “1” only when membrane voltage at the same point exceeds the threshold, which corresponds to the 
propagation of an action potential along the axon and subsequent release of neurotransmitters at 
synapses along the axon. 

https://docs.google.com/presentation/d/1pWz34D-fWtHt_OERs5JmQeBt7M2NRONz3SstbYLRJI0/edit#slide=id.g96c772db5c_0_2
https://docs.google.com/presentation/d/1pWz34D-fWtHt_OERs5JmQeBt7M2NRONz3SstbYLRJI0/edit#slide=id.g96c772db5c_0_2
https://docs.google.com/presentation/d/1pWz34D-fWtHt_OERs5JmQeBt7M2NRONz3SstbYLRJI0/edit#slide=id.g96c772db5c_0_2
https://docs.google.com/presentation/d/1pWz34D-fWtHt_OERs5JmQeBt7M2NRONz3SstbYLRJI0/edit#slide=id.g96c772db5c_0_2
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transistors: the only reliable state value capable of propagating itself through time is “0,” which 

means that the neuron cannot encode information by itself42.  

As we know, neurons do not exist in isolation. If we consider that the binary state of a single 

neuron in the motor cortex cannot encode information (even cells that are intrinsically capable of 

rhythmogenesis still have a refractory period during which they cannot elicit the “1” state after an 

action potential), then the scheme must change: it is the pattern of “0” and “1” states that the 

neuron takes with some arbitrary reference to time, which endows the neuron with its capacity 

to encode information. Therefore, it is only natural to wonder: how do such patterns depend on 

time? Do neurons encode information in a serial code, so that precisely patterned sequences of 

binary events correspond to a hidden state; or, do neurons continuously encode information in 

their membrane voltage or some other network feature, in which case the hidden state is the 

conditional likelihood of a neuron generating an action potential at any particular instant in time?  

The answer is: it depends on the brain area under consideration. In practice, the best solution is 

probably to choose the estimator that is computationally least-expensive. The true solution, 

while interesting to consider, will probably not be finalized any time soon: opinions in motor 

systems neuroscience seem to fluctuate between acknowledging the importance of timing or 

eschewing it every few years. The following sections elaborate slightly on this issue that was 

more intensely scrutinized during the late 1980’s and early 1990’s. 

Premotor synchrony: the case for precise timing as the neural state code 

In the late 1980’s and through the 1990’s, Alexa Riehle and her computational collaborators 

designed a clever experiment in macaques to test the importance of precise timing of spikes 

                                                
42 There are exceptions. Gyorgy Buzsaki famously summarizes things like pacemaker neurons, whose  

endogenous biophysical characteristics endow them with the ability to sustain rhythmic generation of 
action potentials, in his influential book which is well worth a read (Buzsaki 2006). However, most if not all 
neuron subtypes in the motor areas of the cerebral cortex do not exhibit such properties. 
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from sorted single-unit activity observed from multiple locations in the macaque premotor cortex 

simultaneously. The task required holding a ready position for a variable duration until a target 

cue was issued at one of a few fixed latencies relative to reaching the ready state (Riehle & 

Requin 1989, Riehle et al. 1997). They noticed that short epochs, which aligned with the set of 

possible discrete cue latencies, contained a significant increase in the likelihood of synchronous 

spiking between multiple cells. Riehle suggested that the macaque had learned these latencies, 

and that the number of synchronous events reflected a physiological process. To substantiate 

this argument, the number of synchronous events was estimated using an assumption of 

linearity on the expected spike rate during each epoch. If the number of spike times that were 

coincident within some time-window significantly exceeded what would be expected by chance 

on the basis of random stochastic realizations of the rates during these windows, as was 

observed, it was hypothesized to substantiate the importance of timing at least with respect to 

features of the reach. A notable observation was that when the number of synchronous events 

was higher, it seemed to correlate with trials on which the monkey was paying better attention to 

the task, which was evident in its performance (Riehle et al. 1997). 

Premotor variability: the case for counts or rates as the neural state code 

At the same time as the experiments of Riehle and colleagues, due to the possibility of 

recording from multiple spatial channels distributed throughout the motor areas of cerebral 

cortex simultaneously, there was a rising interest in the development of brain computer 

interfaces (BCI) for a variety of applications (some of which were discussed in Chapter 2). In 

general, the use of counts or instantaneous rate estimates, at least in motor systems and 

particularly by investigators such as Evarts or Georgopoulos, was common. Such strategies 

accepted the limitations of experimental regimes that made it impossible to rely upon manual 

curation and meticulous sorting of spike waveform snippets to isolate or differentiate between 

single-unit and multi-unit activity on the basis of characteristic spike shapes. Peri-event time 
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histograms (PETH) were seen as an acceptable endpoint: the spikes were a stochastic 

realization of noisy processes that were biased towards more-frequent observation at specific 

times relative to behavior due to some relation to it. If more than one unit was under 

consideration simultaneously, then the simplest way to describe the experiment was by 

constructing a joint probability estimate relating the conditional likelihood of observing a 

particular count of spikes from the first unit at some instant relative to the behavior to the 

expected number of spikes from the second unit at the same or different instant relative to the 

same behavior (Gerstein 1969). 

The two modes of thought might be summarized as treating spike times as either deterministic 

processes or stochastic reflections of some underlying generative process. Eventually, efforts 

were made to reconcile discrepancies: since the true coding formulation could not be 

determined definitively, computational calibrations were introduced by a number of groups 

(Gabbiani & Koch 1998). For example, spike counts could be considered as doubly stochastic 

with respect to the uncertainty of the time window over which the count should occur (which 

might reflect a faster or slower behavior; such a thing might even be related to the observed 

spike rate intrinsically). Such characteristics became characterized by putative unit subtype, so 

that a calibration could be made to compute modified higher order statistics such as variants on 

the Fano Factor that were more reliable for high spike rates (Shinomoto et al. 2005). 

Returning to the issue of spike synchrony prior to movement: by applying a principled approach 

to recover variance using statistical assumptions related to the assumption that spike counts 

should demonstrate Poisson characteristics, it was found that premotor variability at a 

population level was intrinsically higher prior to movement execution (Churchland et al. 2006a). 

In addition, increases in premotor variability correlated with greater movement speed 

(Churchland et al. 2006b). These findings suggest that the results of Riehle may have been due 
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to an underestimate on the probability of coincident spike detection, rather than indicating some 

other timing mechanism. 

Which version of neural state should be used? 

At least insofar as the motor cortex43, it is probably the case that a simple kernel smoothing to 

approximate the instantaneous firing rate, which essentially requires the convolution of a 20- or 

30-ms rectangle or weighted kernel function with similar bandwidth, serves as a suitable 

estimate (Manwani 2002). There are many rate estimators that have statistically optimal 

properties under different assumptions and considerations (Shimazaki 2007, Shimazaki 2010). 

The marginal benefit of using such an estimator is probably quite low given the current state of 

this type of experiment in the reaching rat model as it is used within the field of rehabilitation 

medicine. 

Supposing that spike rate, or the instantaneous likelihood of observing a spike, is used to 

estimate the neural state at the level of individual units. Recall that this does not resolve the 

issue of information encoding (at least for neurons in the motor cortex): the neuron at an 

individual cell level cannot maintain a fixed rate for an arbitrary period of time without network 

interactions. However, consider the idea that (transiently) it is wished to encode a target for the 

behavior, such as the pellet to be retrieved by the rat. The pellet may not be placed yet, or the 

door allowing the rat to retrieve the pellet may be occluded. As the rat prepares to retrieve the 

pellet as quickly as is allowable given the retrieval setup, the target must be encoded somehow 

to the cortical neurons that exert influence on the voluntary motor output of the forelimb. The 

information that allows this target to manifest as a goal against which the firing state of the 

                                                
43 Response properties of neurons in the forelimb and hindlimb areas of the rat primary sensory cortex 

have been characterized by Karen Moxon and colleagues (Tutunculer et al. 2006, Moxon et al. 
2008).Their work suggests that there might be two relevant codes: a time-to-first-spike code that indicates 
a particular cortical representation receives the earliest nervous impulses related to a particular sensory 
stimulus, and an aggregate amplitude code that may relate to the intensity of the stimulus. It is not hard to 
imagine how such signals could be coded in an orthogonal fashion, which makes sense intuitively. 
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neural population continually optimizes must persist for some arbitrary period of time. Therefore, 

the neural state, as it relates to information regarding the target specifically, is probably more 

accurately described by the simultaneous spike rates of many cortical neurons simultaneously. 

Note that some of these cells may contain descending corticospinal output projections: while the 

cells might become active transiently, the activations must be balanced in such a way that 

results in no movement.44 

An analogy that is commonly invoked by Systems Theorists when explaining the neural 

population dynamics is to describe the phase portrait of the differential equations pertaining to 

an undamped pendulum without forcing (Figure 3.8, neural architectures box). Once any 

position along the phase portrait is identified, the rest of the points and all future trajectories are 

defined completely unless the system is subjected to an external influence (Figure 3.8, central 

phase portrait). Concretely, if there is no damping and no forcing, then as long as the pendulum 

is dropped from a low enough point and a small enough initial velocity is supplied, the pendulum 

will continue to swing back and forth forever. Analogously, despite change in its constituent 

firing rates through time, the neural population state could be maintained in such a trajectory for 

an arbitrary period of time in order to “hold” a target. Furthermore, if a sufficient perturbation or 

increase in velocity is supplied, the behavior of the system changes (Figure 3.8, right phase 

portrait): instead of reaching some point and changing direction, it enters orbit, spinning 

indefinitely about the idealized point of fixation. This means that such a population state 

represents a potentially efficient mechanism wherein only a small (external) input is required to 

shift the target to a new point. What circuit elements would be required for such a population 

state to stably perpetuate in a metabolically efficient manner, and how long such a system could 

plausibly retain a target in practice, are each open questions that are probably both model- and 

behavior-specific. However, such rotations of the population space are observed in the reaching 

                                                
44 This is known as the “cortical null space” hypothesis (Kaufman et al. 2014). 

https://docs.google.com/presentation/d/1pWz34D-fWtHt_OERs5JmQeBt7M2NRONz3SstbYLRJI0/edit#slide=id.g96c772db5c_0_2
https://docs.google.com/presentation/d/1pWz34D-fWtHt_OERs5JmQeBt7M2NRONz3SstbYLRJI0/edit#slide=id.g96c772db5c_0_2
https://docs.google.com/presentation/d/1pWz34D-fWtHt_OERs5JmQeBt7M2NRONz3SstbYLRJI0/edit#slide=id.g96c772db5c_0_2
https://docs.google.com/presentation/d/1pWz34D-fWtHt_OERs5JmQeBt7M2NRONz3SstbYLRJI0/edit#slide=id.g96c772db5c_0_2
https://docs.google.com/presentation/d/1pWz34D-fWtHt_OERs5JmQeBt7M2NRONz3SstbYLRJI0/edit#slide=id.g96c772db5c_0_2
https://docs.google.com/presentation/d/1pWz34D-fWtHt_OERs5JmQeBt7M2NRONz3SstbYLRJI0/edit#slide=id.g96c772db5c_0_2
https://docs.google.com/presentation/d/1pWz34D-fWtHt_OERs5JmQeBt7M2NRONz3SstbYLRJI0/edit#slide=id.g96c772db5c_0_2
https://docs.google.com/presentation/d/1pWz34D-fWtHt_OERs5JmQeBt7M2NRONz3SstbYLRJI0/edit#slide=id.g96c772db5c_0_2
https://docs.google.com/presentation/d/1pWz34D-fWtHt_OERs5JmQeBt7M2NRONz3SstbYLRJI0/edit#slide=id.g96c772db5c_0_2
https://docs.google.com/presentation/d/1pWz34D-fWtHt_OERs5JmQeBt7M2NRONz3SstbYLRJI0/edit#slide=id.g96c772db5c_0_2
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rat model and do seem to relate to motor performance (Chapter 5). Fortunately, the process for 

recovering such a state space from the neural firing rates is well-described (Churchland et al. 

2012; Figure 3.6 right panel MIMO filter block).   

  

https://docs.google.com/presentation/d/1pWz34D-fWtHt_OERs5JmQeBt7M2NRONz3SstbYLRJI0/edit#slide=id.g98e16389fb_0_64
https://docs.google.com/presentation/d/1pWz34D-fWtHt_OERs5JmQeBt7M2NRONz3SstbYLRJI0/edit#slide=id.g98e16389fb_0_64
https://docs.google.com/presentation/d/1pWz34D-fWtHt_OERs5JmQeBt7M2NRONz3SstbYLRJI0/edit#slide=id.g98e16389fb_0_64
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Tools for measuring the limb state 

Data acquisition 

A list of methods that do not work in the reaching rat model. 

As mentioned previously, technical challenges with acquiring the EMG signal directly from 

forelimb muscles of the rat during pellet retrieval means that the limb state must be estimated 

indirectly. The experiments of Evarts made use of a force transducer in order to provide a 

correlator to both EMG and cortical spike rates (Evarts 1968); however, aside from ground 

forces relating to postural support from the non-reaching forelimb, the use of force 

measurements is impractical for the reaching rat as well. The experiments of Georgopoulos, 

which measured position, made use of a system of ultrasonic sensors for triangulating an 

emitter attached to the dorsal surface of the monkey’s distal forelimb (Georgopoulos 1982). This 

might be a possibility in rats, but would probably fail for reasons common to most systems 

requiring the attachment of some marker to the forelimb. In the author’s experience, the 

reflective marker system (Optitrack) used previously by the cortical plasticity lab for measuring 

gait kinematics in ambulatory rats after spinal cord injury (Borrell 2020) proved ineffective for 

capturing 3D kinematics in reaching rats due to the tendency of rats to remove the reflective 

markers. The infrared cameras used in combination with these markers also suffered in 

performance due to reflections caused by surfaces of the experimental box. Similarly, 

application of green nail polish in an attempt to define fixed marker positions for post hoc 

extraction led to the rats mostly misbehaving. 

Recovery of markers using stereo-calibration and post-hoc detection 

Camera setup 

The recommended method for recovering 3D kinematics in the reaching rat requires an initial 

calibration. The first step is to define a placement of cameras from a series of angles as 

required to capture dimensions of relevant variance to the reaching movement (for example, a 



113 

camera perpendicular to the box opening is helpful; Figure 3.9A). The video cameras must be 

placed in a fashion that also captures an LED or other element that allows the approximate 

post-hoc synchronization of the offset for the start of each recording record; due to drift in 

camera frame rate and the fact that cameras typically break recordings into multiple data files 

over the course of a single session, it is recommended that this synchronization calibration can 

be applied for each individual pellet retrieval trial. It is also recommended to attach a 

checkerboard pattern to a surface that can be seen for each trial, from each camera, so that if 

necessary a calibration can be recovered for each trial (which is important for example if a 

camera is bumped even slightly by the experimenter). It is recommended if at all possible to use 

a camera with a minimum sample rate of 60 frames per second; a camera with 30 frames per 

second was used in the experiments described in Chapter 5 and based on the time scales of 

phases of behavior it might barely be sufficient but the behavior is better-served by 60 frames 

per second at a minimum. The movements in Chapter 6 were captured using a camera 

sampled at 240 frames per second; the movement was well-handled at this frame rate, although 

with such low frame rates, ambient lighting becomes a non-trivial issue. Critically, increased 

ambient lighting by using high-intensity search and rescue flashlights does provide an increase 

in light, but they did have a noticeable impact on reach accuracy.  

 

https://docs.google.com/presentation/d/1pWz34D-fWtHt_OERs5JmQeBt7M2NRONz3SstbYLRJI0/edit#slide=id.g96c772db5c_0_70
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Figure 3.9: Post-hoc recovery of kinematics. 

While calibration and collection of kinematic measurements using commercial devices such as 

the OptiTrack equipment used for gait studies in spinally injured rats is both more accurate and 

less cumbersome, repeated attempts to apply reflective markers to the digits and paw in order 

to make such measurements during pellet retrievals proved fruitless. A) Instead, 3D 

reconstructions of kinematic estimates could be obtained by using stereo-calibrated camera 

pairs or triplets. B) Markers used in training a deep network on still frames acquired from 

camera-1 (shown in A). C) Same as B, but for camera-2. Matched points could then be 

triangulated, although this was more accurate when measurements from multiple sets of 

cameras were used due to the occasional occlusion of marker target regions. 

 

Training post-hoc markerless tracker 

Once videos have been acquired from the desired angles, the author found that it was easiest to 

train a separate marker detector for each camera angle using the DeepLabCut interface 

provided by Mathis and colleagues (Mathis et al. 2017). Initial training typically only requires 15-

20 labeled frames, for which the desired marker labels should be applied in a manner consistent 

across cameras in order to coregister them later (Figures 3.9B and 3.9C provide examples 

from two cameras capturing the forelimb on the same reach trial). Depending on the 

arrangement of cameras, in certain frames, some of the digits may not be visible; 

documentation on the repository associated with the Mathis study explains how to account for 

this during the initial labeling procedure. 

Recovery of marker position estimates using trained network output 

After the initial training, the network is then used to recover marker estimates for each video 

frame. The output of the network gives pixel coordinates for each marker, along with the 

associated likelihood that the output actually is the marker (the network detects candidate pixels 

and returns the most likely pixel as the marker position). At this stage, the output may already 

https://docs.google.com/presentation/d/1pWz34D-fWtHt_OERs5JmQeBt7M2NRONz3SstbYLRJI0/edit#slide=id.g96c772db5c_0_70
https://docs.google.com/presentation/d/1pWz34D-fWtHt_OERs5JmQeBt7M2NRONz3SstbYLRJI0/edit#slide=id.g96c772db5c_0_70
https://docs.google.com/presentation/d/1pWz34D-fWtHt_OERs5JmQeBt7M2NRONz3SstbYLRJI0/edit#slide=id.g96c772db5c_0_70
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be good enough depending on the quality of the video and accuracy of the training labels, as 

well as how the training labels were distributed over the course of the behavior. Ideally, the 

training labels reflect the hand in a variety of configurations, so that some peculiarity of the hand 

conformation is not overlearned by the network, causing problems with generalized labeling. 

Alternatively, after reviewing the output kinematic errors by visual inspection of the markers 

superimposed on the original video frames, parts of the behavior where the network consistently 

underperforms should be identified; more training images can be extracted from those 

segments and labeled; and then these training images can be used to retrain the network, 

initializing the network weights using the previously learned configuration. 

Once all the video frame kinematic labels have been exported and aligned to satisfaction, the 

pixel coordinates for each camera pair can be used to triangulate an estimate of the world 

coordinate system. This stage benefits from de-noising: for example, a Kalman filter can be 

applied as an initial step to simply exclude large “jumps” in the observed kinematic series that 

are most likely due to mislabeled pixels returned by the network output. 

Limb State: related repository links and brief descriptions 

● DeepLabCut: this is a tool developed and described by the Mathis group (Mathis et al. 

2017). Because the group actively maintains this tool, it makes more sense to get the 

version they have maintained, as the group has also suggested that at some point in the 

future they will implement a Kalman filter to automate some of the de-noising described 

above. 

● Kalman-Thesis: This repository contains code that was used to de-noise the kinematic 

data used in Chapter 6. As a rule of thumb, most application-specific repositories are 

written with Matlab version R2017a+ in mind, and should contain a main.m script that 

organizes or gives examples for the use of repository contents. Repositories that were 

http://www.mousemotorlab.org/deeplabcut
https://github.com/m053m716/Kalman-Thesis


116 

created later in the author’s graduate career also contain Contents.m files, so that those 

tools are compatible with the Matlab built-in `help` and `doc` features. 

● rc-proj: Limb state analyses (specifically, tools used to score videos and curate 

behavior to tag movement phase delimiters) are contained in the subfolder 

videoAnalyses. It was used in the manuscript under preparation that serves as the bulk 

of Chapter 5 (Pack et al. 2020; note that this is technically a co-first-authorship). 

Tools for measuring the neural state 

The neural state, as previously mentioned in this Chapter, is application-specific. This section 

describes steps taken to obtain typical neural state features such as spikes and LFP spectral 

content. It also provides consideration regarding the cost-benefit tradeoff when using in-house 

fabricated custom electrode designs compared to arrays from a commercial vendor. The 

acquisition circuit is a critical and experiment-specific component, so some considerations when 

setting this circuit up are raised, as well as a brief discussion of the 3D-printed automated box 

for scaling up rat training. Finally, during experimentation, data is saved in a device-specific 

binary format, which must then go through subsequent processing and cleaning stages that are 

specific to both the acquisition circuit and the desired experimental endpoints (example 

overview in Figure 3.10).   

 

https://github.com/m053m716/rc-proj
https://github.com/m053m716/rc-proj/tree/master/videoAnalyses
https://docs.google.com/presentation/d/1pWz34D-fWtHt_OERs5JmQeBt7M2NRONz3SstbYLRJI0/edit#slide=id.g96c772db5c_0_102
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Figure 3.10: Bilateral sensorimotor field potentials. 

Overview of acquisition scheme for experiments involving bilateral recordings from 

sensorimotor cortex. A) Dorsal view of the skull with cartoon illustrations of electrodes (B) 

and indicating skull regions to remove based on cortical targets. B) Custom electrodes use 40-

�m diameter polyimide-coated tungsten wire that were individually hand-soldered to copper 

pads on custom electrode interface boards (EIB). Each electrode is attached to a 36-pin 

connector, with 2 pairs of pins tied to reference and ground sites. Black wires indicate 

“floating” leads that were inserted to the sensory cortex to acquire LFP signals. C) Example of 

contact with foreign surface prior to the closing of digits, a typical alignment event. D) 

Example of signal on a subset of 6 channels; asterisks denote spikes that correspond to action 

potentials on the highlighted channel. E) Raster indicates timing of spikes on highlighted 

channels relative to the alignment event (blue vertical line). Red box indicates a large increase 

in spikes that correlates temporally with cutaneous surface contact (example shown in C). 

 

Electrode array design considerations 

The selection of electrode array design is a critical consideration regarding measurement of the 

neural state. The very first decision is non-trivial: should the investigator fabricate custom 

electrodes by hand (e.g. Figure 3.10B), or order them from a commercial vendor? This is 

typically dictated by budget constraints and the number of rats and recording targets required to 

power an experimental aim. An initial cohort of rats implanted bilaterally with custom in-house 

32-channel polyimide-coated tungsten microwire arrays that spanned sensorimotor cortex 

produced viable spike and LFP activity. By the end of the experiments, the author was able to 

fabricate electrodes (such as pairs of double-bundled 16-channel bundles for bi-hemispheric 

targets described by Figure 3.11) with mean fabrication time of roughly 1.75 hours and 

standard deviation of probably 30 minutes (best assembly time was probably 1.5 hours). The 

fabrication process itself will inevitably be specific to experimental design; taking this into 

https://docs.google.com/presentation/d/1pWz34D-fWtHt_OERs5JmQeBt7M2NRONz3SstbYLRJI0/edit#slide=id.g96c772db5c_0_102
https://docs.google.com/presentation/d/1pWz34D-fWtHt_OERs5JmQeBt7M2NRONz3SstbYLRJI0/edit#slide=id.g9c7c74f48d_0_0
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consideration will also yield an improved and more practical final electrode array design (for 

example, in a bi-hemispheric configuration, the assembly in Figure 3.12 ends up being more 

useful). 

There was one key process improvement step and two key reagent improvements that greatly 

increased the viability of electrodes fabricated in this fashion and so are described here for 

posterity. The first step was switching from silver paint to hand-soldering each wire to the 

exposed copper pads. This means that the first step is to hand-solder the Omnetics connector 

headpins to the electrode interface (EIB) pads. Obtain a clean 28-gauge (or highest-available 

gauge) hypodermic needle and modeling clay that will be used to hold the needle, and place 

these where they will be easily accessible along with a small aliquot of the silver and flux paste 

mixture that will be applied using the needle. Using the needle, apply the silver and flux paste 

mixture along the EIB pads with the Omnetics connector headpins clipped into alignment with 

the pads: you should only need a grain or two per pad.  

 

https://docs.google.com/presentation/d/1pWz34D-fWtHt_OERs5JmQeBt7M2NRONz3SstbYLRJI0/edit#slide=id.g5384b9b15a_0_0
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Figure 3.11: Building microwire array bundles 
Overview of example contact grid schematic and setup for construction of microwire array 

bundles to target stereotaxically defined rostral forelimb area (RFA) and caudal forelimb area 

(CFA).  

A) Right-hemisphere array. Critical considerations are the spacing between bundle centers, 

which are defined by site spacings of the Contact Grid array. The length of wire bundle that 

remains flexible (i.e. non-encapsulated by UV glue) is also an important determinant in 

likelihood of implantation success; however, leaving this part too long may also lead to 

degradation of electrode signal or ultimate electrode failure. B) Left-hemisphere array. This is 

essentially a mirror-image of what is shown in Panel A, but note the reversed orientation of 

the electrode interface board (EIB); the omnetics part number no longer faces upward during 

electrode construction. 
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Once the connector is bonded to the EIB, use a helping-hand device or similar (anything with 

alligator clips to suspend small parts) so that the Omnetics header pins are used to suspend the 

rest of the EIB with the wire holes exposed. Critically, at this part make sure the orientation is as 

expected; a systematic method for bonding the wires means that they will take a stereotyped 

grid pattern and speed the process up by preventing the need to write the grid orientation of 

each wire unless a mistake is made. Note that the pattern which makes this process most-

accessible (at least to the right-handed investigator) starts with the far-bottom-left hole on the 

EIB copper rings, then the second-to-the-left bottom hole, then the far-left top-hole, and then 

continues alternating between bottom and top in this manner until all the wires are bonded. A 

secondary clip should be used to suspend a pair of guide boards, clamped together so that they 

are immediately stacked and all the holes are perfectly aligned, at the desired offset distance 

from the EIB. This should approximately correspond to the envisioned distance between the 

eventual connector offset on the head relative to where the wire bundles will be inserted. 
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Figure 3.12: Reorienting microwire bundles. 
 

Example of a stereolithographically printed assembly housing for a different orientation of the 

bilateral custom array layout. Because of the protrusion of the microwire array (the 32-channel 

connectors are relatively large by comparison to the entire size of the rat’s head to begin with), 

the rats sometimes get stuck during the task near the front of the box, or have to alter their 

learned behavior and ultimately generate unwanted motor output. To mitigate this, a new 

configuration of electrodes was conceived, whereby the electrodes are oriented at 

approximately a 45 degree angle with respect to the skull, and bundles are built specifically in 

lateralized pairings so that paired electrode microwire arrays are used for a given animal.  

 

The thicker contact grid for microwire spacing was added in the hopes of making the spacing 

more uniform after the final cutting procedure once all the microwires had been set in place; 

however, in practice this did not work much better than the original thin contact grids. 

 

Each individual microwire is cut to a length of approximately 1.5-inches and at an angle so that 

one end will be the sharp side. The wires should be arranged along a piece of white paper so 

that a slightly-blunted number-15 scalpel blade (typically re-used) is used to scrape 

approximately 100 to 200-mm of the polyimide coating from the end of each wire opposite the 

diagonal cut. Similar to a ribbon on a gift, this will cause the wire to curl; this is good because it 

provides an easy point to grab individual microwires using the forceps. The next part requires a 

benchtop scope focused on the suspended EIB apparatus (make sure to adjust prior to starting 

to avoid neck cramps). Make sure that the finest tip available is attached to the soldering iron 

and set it to 650F. Changing the desktop light supply is also critical to give an angle that lights 

both the EIB holes and the guide grid.  

The next part is hardest and the investigator should not be discouraged but might expect some 

minor cutaneous injuries to occur, so please be very careful if you find yourself following these 

instructions for whatever reason45. Once the microwire is grasped with forceps by one hand, 

                                                
45 Surely, there is a better way of doing this. 
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manipulate the hook so it faces toward the holes on the EIB and grasp it approximately 0.5-

inches from the hook with the non-forcep hand. Setting down the forceps with the other hand, 

retrieve the needle from the modeling clay and dab a tiny bit of the flux paste onto the tip. The 

needle can be used to help guide the hooked end of the microwire through one of the EIB 

copper-ringed holes; make sure that some of the flux paste and silver granules are deposited 

along with the hooked wire. Now, keeping the hand with the wire looped in place very carefully, 

put the needle back in the clay and retrieve the heated soldering iron. Be careful about holding 

the wire too close to the EIB. Just a very light touch should immediately cause the silver and flux 

paste to glisten indicating that it has melted; the hole should become completely covered. At this 

point a common error is to put the hook through too far so that the polyimide obstructs bonding 

of the wire to the copper pads; should this happen, you may need to reheat the silver paste and 

withdraw the wire slightly. If the wire does not move in or out of the hole when a light tug is 

applied, then the silver paste has bonded correctly. When done correctly, there should be 

enough remaining wire to now thread through the grid array guide on the second clip as dictated 

by the desired spatial arrangement of electrodes. 

Once all electrodes are bonded and arranged as desired through the guide array, the next step 

is to fix things in place. Small bundles formed by sets of wires together using suture silk helps 

keep the wires together in a tight bundle. First, the back part of the EIB should be checked and 

excess wires sticking out the opposite side should be trimmed so that they are less likely to flex 

in some odd way and cause a short. Using the thicker silver ground wire, add grounds to the 

reference/ground pads that are tied together on either side of the array. Finally, use the 

Standard UV glue (Riverruns brand) to mechanically secure all the bonded leads in place. 

During this process, you can affix clipped approximately 1-inch long segments of carbon rod to 

the EIB assembly near the headstage. This allows you to use dental acrylic to ensure that a 

https://www.amazon.com/Riverruns-Formula-Building-Special-Introductory/dp/B01N4N8OIZ/ref=sr_1_1?dchild=1&keywords=UV%2Bfly%2Bfish%2Bkit&qid=1600197260&sr=8-1&th=1
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point-of-purchase will remain secure on the electrodes so that dental rubber bands can be used 

to secure the recording headstage to the electrode connector during behavior.  

After a coat of Standard, the Thin UV glue produced by the same company can be applied 

lightly to give the electrode a harder outer shell for protection. The Thin UV glue is somewhat 

runny so be careful that it does not drip down onto the precious array, or into the connector 

holes, at this point. This property is useful however, in that it helps seal any gaps in insulation of 

the EIB. Finally, carefully (making sure not to dislodge inserted wires from their grid positions) 

tie the bundles as desired just above the guide grid held by the second clip. Once tied, the 

suture helps prevent the UV glue from running down onto the guide grid, but that seems to 

occur more-often than not, which is why 2 guide grid array boards are suggested for use. Once 

the bundle is sufficiently glued together (probably do not glue the entire bundle, as then the 

whole thing will become rigid and almost impossible to insert during surgery in a way that 

feasibly allows a second array), carefully re-sharpen the best pair of carbon-tipped scissors 

available. The final stage is to re-cut the angled ends of the wire bundle (below the grid) so that 

they are arranged at approximately the same planar depth. This is a noted limitation of such 

custom in-house arrays: the spatial grid is not as accurate as a commercially-fabricated array, 

and if precision in that regard is important for the experiment, then commercial arrays must be 

used. 

While tedious, when fabricated in this fashion, electrode impedances were almost always 

consistent with the 100-to-400 kΩ range expected given the 40-μm wire diameter and 

anticipated exposed surface area. Total number of viable channels was animal-specific and the 

sample size was probably too low to get a meaningful estimate; however, overall it probably 

tends to be not as good as with commercial arrays (in the pilot data used for Chapter 6, 14 of 

the channels were rejected outright during acquisition; a remaining 25 channels were 

subsequently rejected because they did not contain viable spike activity).  
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Data acquisition 

At the cortical plasticity lab, as of the time of this writing, there are two primary commercial 

acquisition systems for which tools were developed (TDT and Intan). Experiments in Chapter 4 

and Chapter 6 make use of the Intan system. The experiment in Chapter 5 used the TDT 

system. The author recommends using how to learn the Intan system: it is ultimately more 

flexible and also components are much cheaper than the TDT system. However, prototyping 

hardware components for closed-loop applications is probably easier using the TDT system due 

to the graphical interface provided to create custom acquisition circuits. 

When designing an acquisition circuit, the primary considerations should be the type of neural 

data to be collected, and whether there will be any timing components to the experiment that will 

require synchronization of events or epochs with the neural time-series. It is typically a good 

idea to have some sort of digital logic signal that can be manually manipulated by the 

experimenter (i.e. a simple button-press circuit), and this circuit would ideally also have an LED 

attached to it so that it could easily be used to synchronize video cameras. While an ideal 

workflow would integrate some graphics unit or FPGA modification that allowed streaming video 

signals to be converted and remove the bulk of the image data that is saved with the large 

behavioral videos in an automated and online fashion, such a project was beyond the scope of 

this thesis. 

Regarding the neural data to be acquired, if measuring spike activity, sample rates of 20 kHz or 

greater are sufficient; the author did not experience noticeable improvements in spike detection 

or automated clustering procedures using 30 kHz. If only the LFP or only EMG is to be 

measured, then 1 kHz is a recommended sample rate.  

Regarding the automated box described in a preliminary form in (Bundy et al. 2019), a key 

consideration in the reaching rat is the fact that unlike monkey experiments, which can isolate 
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premotor activity well due to the presence of cues that do not elicit immediate behavior, the 

reaching rat model poses the problem of distinguishing premotor from motor activity particularly 

because one of the hypotheses specifically involves the expectation that activity in a premotor 

area will shift after injury to resemble activity from a motor one. The author attempted to teach 

rats an experimental paradigm in which the rats learned to associate one of two tone cues with 

either a left or a right door. This experimental configuration was part of ambitious46 experiments 

outside the scope of the thesis, but worth describing in case the collected data are of interest to 

a future student or other lab member. In general, a setup in which the rats learned to perform a 

nose poke seems to be too difficult for the rats to distinguish a tone and run to the correct door 

consistently, an effect that becomes exacerbated after implant and associate recovery given the 

size of the large arrays even in Intact animals. It is speculated that such experiments could 

succeed and would probably be informative if restricted in scope: instead of training rats to use 

both doors, simply training rats on a unilateral task and focusing on one hemisphere would still 

be quite interesting in rats that learned the nose poke task. Unlike the behavior described by 

Bundy and colleagues, which involves pressing a button and so represents a distinction 

between a simple and complex behavior, wherein the pellet retrieval represents the latter; the 

nose poke could be used to train the rats to hold at the hole for variable periods of time, which 

would present clear alignments for premotor activity. The recommended structure for such 

variable hold periods would reflect the experimental design of Alexa Riehle and colleagues, but 

on a shorter time scale (Riehle et al. 1997); anecdotally it seems like rats do not have as much 

patience as monkeys.  

To a graduate student reading this, many of these recordings have been processed and 

metadata are kept in a log with all animal records and notes of this author during his time in the 

                                                
46 One of the main things learned during the course of the author’s graduate career is to avoid this word if 
at all possible. 
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cortical plasticity lab. There is a wealth of data associated with these recordings that is 

untapped and unpublished that is sitting on the `P:/Processed_Data` lab server in 

`BilateralReach` or at the very least in `R:/Raw_Data`. A shareable online document47 with 

more notes, observations, and preliminary findings is happily made available upon request. 

Knowing that sometimes there is some amount of momentum to be built up prior to the 

collection of one’s own animal recordings, these data might be a great starting place for a new 

graduate engineering student who has recently joined the laboratory. 

File organization and conversion 

In general, a standardized method for naming experimental recordings and assigning surgical 

identification numbers is followed in the cortical plasticity lab. This allows tracking of associated 

animal behavioral logs, surgical records, and other types of metadata. Critically, nigeLab, which 

is the synthetic version48 containing features of most other repositories described in the 

following sections. The nigeLab wiki contains more information regarding file naming 

conventions in place at the cortical plasticity laboratory, although it also allows the user to 

change name conventions using different configuration files to provide a flexible and 

experiment-specific framework. In general, nigeLab should just be thought of as a tool that 

allows efficient access, organization, and association of neural recordings to other experimental 

metadata. 

Once experimental data is saved, it can be converted to a hierarchical format using CPLTools 

(described below) or nigeLab that makes it easier to access and manipulate in a consistent 

manner that creates an expectation of organizational structure between collaborators.  

                                                
47 The linked OneNote document may cease to point to a viable location, but should remain available 
while relevant. 
48 Continually under development, nigeLab remains an ongoing collaboration with Federico Barban from 
Istituto Italiano d’Tecnologia. Neither collaborator could think of a good name, so it was named as a 
portmanteau of the author’s cat (Nigel) and Matlab. 

https://1drv.ms/u/s!Aq8YtwRqrRMSrncWlMBi8rDKC5eL
https://github.com/m053m716/ePhys_packages
https://github.com/m053m716/ePhys_packages/wiki
https://github.com/m053m716/ePhys_packages/wiki
https://github.com/m053m716/ePhys_packages
https://github.com/m053m716/CPLtools
https://github.com/m053m716/ePhys_packages
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Filtering and De-noising 

All pipelines described are designed to automatically save a separate set of data with a 300-Hz 

high pass state filter applied to each channel, and a secondary set of “re-referenced” and 

filtered data which subtracts the mean time-series from all channels on a single probe from the 

individual channel values (common average re-reference; CAR). This procedure was found to 

be quite important for improving spike detection; commonly there is probably a slight impedance 

mismatch between reference and recording electrodes that results in not only 60-Hz line noise, 

but also demodulated AM radio signals, which occupy the frequency band of interest with 

respect to spike activity. The CAR procedure helps with each of these things, and it also helps 

to attenuate artifacts due to vibration or chewing.  

Some investigators have reservations about applying the CAR to denoise their data, with the 

concern that it will add inappropriate spikes due to spuriously “loud” channels contaminating the 

other ones. This is a valid concern, but there is a practical solution: simply look at a short 

snippet of each channel and if more concerned, and discard any channels with clearly aberrant 

features (in the author’s experience this is almost always very clear, and so this perceived 

problem is the result of engineering trying to “over-automate” certain steps). A more cautious 

investigator might plot a distribution of RMS values for each channel in sliding 1-second 

windows from the entire signal or random sub-samples along the total signal length to assure 

themselves that they are only including channels with signal RMS values. Then, as long as the 

number of channels on an array is 8 or more49, the CAR procedure is a safe way to remove 

spatially distant common noise sources. 

                                                
49 A large spike amplitude would be 200-μV in an extreme case. This would add 25-μV to the time-sample 
of non-spiking channels in the 8-channel case. If the RMS noise is on the order of 25-μV, there are other 
more serious concerns about the recording; using the Intan system a typical noise characteristic might be 
10-13μV. A good rule of thumb is to require that spikes must be at least 50-μV in amplitude in order to get 
usable multi-unit activity. Therefore, it is unlikely even in this extreme example that the CAR procedure 
would lead to very many false positive apparent spikes. Typically, at least 13 or 14 channels are present 
on any given probe to begin with, and a large stereotyped spike might reach 150-μV on a good day. 
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Another consideration regards data that makes use of electrical microstimulation, such as is 

used in the cortical plasticity lab for certain closed-loop therapeutic experiments. The 

investigator in this situation must double-check what unit filter is applied during the data 

processing step50. An FIR bandpass filter with tight passband specifications might be useful in 

some instances, but when “short memory” of a recent large artifact that is orders of magnitude 

larger than the signal of interest is required, a short IIR filter with little or no memory is a much 

better choice. If the wrong filter is used during this stage, it will be clear: the filtered signal will 

look very “wavy,” particularly around the stimulus artifacts. 

Spike Detection and Sorting 

A critical consideration is the method of spike detection, since the spikes typically form the 

baseline data points used in generating all other derived metrics in the experiment. This will not 

be covered extensively here, since Chapter 4 provides an online spike detection algorithm and 

a little more context about spike detection in general. A method for computing the smoothed 

nonlinear energy operator and using it to pinpoint spike peaks is provided with both CPLTools 

and nigeLab; this method seems to be the most-robust. The alternative that would be 

recommended is a simple fixed amplitude threshold.  

A usable recording typically has clean enough data that spikes “speak for themselves.” More 

sophisticated detection (and clustering) algorithms will undoubtedly grow in importance with the 

advent of arrays such as NeuroPixels that offer incredible spatial resolution in terms of site 

spacing; however, for the purposes of most if not all experiments at the cortical plasticity such 

things are irrelevant. Furthermore, a benefit of a fixed amplitude threshold is that it provides an 

                                                
50 When the author first learned about digital signal processing, he realized he could very tightly control 

certain passband specifications using a long FIR filter. While this is true, this is actually a case where the 
filter specifications are mostly “guidelines” rather than “specifications,” something which was not realized 
until later. 

https://github.com/m053m716/CPLtools
https://github.com/m053m716/CPLtools
https://github.com/m053m716/ePhys_packages
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immediately contextualizing point of information when reported in either the methods or 

alongside the initial description of spike counts in an experimental manuscript. 

While the author holds the opinion that spike sorting is not useful when recordings are made 

using the resolution of spatial arrays typically used in the reaching rat model, it is also 

recognized that sometimes it is helpful simply as a denoising process (particularly when large 

artifacts due to electrical microstimulation are present and cause “weird” signals in the few 

milliseconds while the amplifier rebounds from saturation). To that end, both CPLTools and 

nigeLab contain a spike sorting and curation interface, as described below.  

 

Neural State: related repository links and brief descriptions 

● CPLTools (Cortical Plasticity Lab Tools): an initial amalgamation of general-purpose 

tools used by the author before smaller and more application-specific repositories were 

made. The repository contains code written for use with Matlab R2017a+. It is split into 

three separate subfolders with the following general organization: 

○ Conversion & de-noising on KUMC Isilon parallel computing (MoveData_Isilon) 

■ Use adHocExtract_Intan.m for data acquired with any Intan system. 

■ Use adHocExtract_TDT.m for data acquired using the TDT system. 

■ After either of the above functions, data should be in a standardized 

hierarchical format, which is elaborated in the nigeLab documentation. 

○ Spike detection on KUMC Isilon parallel computing (_SD) 

■ Use adHocCAR.m to apply common-average re-reference (de-noising); 

use qCAR.m to run the CAR algorithm from the KUMC Isilon clusters 

(generally, code with q leading it indicates that it runs on the Isilon via the 

“job queue”). 

https://github.com/m053m716/CPLtools
https://github.com/m053m716/ePhys_packages
https://github.com/m053m716/CPLtools
https://github.com/m053m716/CPLtools/tree/master/MoveData_Isilon
https://github.com/m053m716/ePhys_packages
https://github.com/m053m716/CPLtools/tree/master/_SD
https://github.com/m053m716/CPLtools/tree/master/_SD
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■ Use qSD.m to queue spike detection jobs on the KUMC Isilon clusters. 

This requires that filtered data exists in the block folder (either `_Filt` or 

`_FiltCAR` should suffice), which must be on the `P:` drive in order to run. 

○ Spike sorting and extraction of miscellaneous measurements (Matlab_Addons) 

■ The spike sorting and cluster curation tool resulting in co-publication of 

manuscripts together with researchers in several collaborative projects is 

contained in this sub-folder, in the Functions sub-folder, in the Spike 

Analyses sub-folder, it is the function CRC.m (Bundy et al. 2019, Averna 

et al. 2019, Millighetti et al. 2020). 

● Intan-DAC-State-Machine-Detector: Code associated with the manuscript and 

software/firmware upgrades described in Chapter 4 reside in this repository. The 

repository Wiki contains additional documentation (Murphy et al. 2019). 

● Phase-Portrait-Example: Code for generating Figure 3.8 or phase portraits in similar 

simulations depending on hypothesized system fixed points. 

● Matlab_Utilities: Code in this repository relates to some miscellaneous utilities that the 

author found useful, particularly for figure generation or creating less-annoying alert 

sounds to notify the end-user that some algorithm or batch process is completed. It is 

required for some of the other repositories listed on the author’s repository profile. See 

documentation associated with the repository for details. 

● rc-proj: Neural state analyses are contained in the sub-folder spikeAnalyses. It was 

used in the manuscript under preparation that serves as the bulk of Chapter 5 (Pack et 

al. 2020; note that this is technically a co-first-authorship). 

  

https://github.com/m053m716/CPLtools/tree/master/Matlab_Addons/Functions/Spike%20Analyses
https://github.com/m053m716/CPLtools/tree/master/Matlab_Addons/Functions/Spike%20Analyses
https://github.com/m053m716/Intan-DAC-State-Machine-Detector
https://github.com/m053m716/Phase-Portrait-Example
https://docs.google.com/presentation/d/1pWz34D-fWtHt_OERs5JmQeBt7M2NRONz3SstbYLRJI0/edit#slide=id.g96c772db5c_0_2
https://github.com/m053m716/Matlab_Utilities
https://github.com/m053m716
https://github.com/m053m716/rc-proj
https://github.com/m053m716/rc-proj/tree/master/spikeAnalyses
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CHAPTER 4 

Improving an open-source system to reliably perform ADS 

Abstract51 

Objective. Activity-dependent stimulation (ADS) is designed to strengthen the connections 

between neuronal circuits and therefore may be a promising tool for promoting 

neurophysiological reorganization following a brain injury. To successfully perform this 

technique, two criteria must be met: 1) spikes in the extracellular electrical field potential must 

be detected accurately at one site of interest, and 2) stimulation pulses generated at fixed (< 

1ms jitter), low-latency (< 10ms) intervals relative to each detected spike must be delivered 

reliably to a second site of interest. Here, we aimed to improve noise rejection in a low-cost 

commercial system to reliably perform ADS in awake, behaving rats, while maintaining latency 

requirements.  

Approach. We implemented a spike detection state machine on a field-programmable gate array 

(FPGA). Because the accuracy of spike detection can be heavily reduced in awake and 

behaving animals due to biological artifacts such as movement and chewing, the state machine 

tracks candidate spike waveforms, checking them against multiple programmable thresholds 

and rejecting any spikes that fail to meet a programmed threshold criterion.  

                                                
51 The contents of this chapter are quoted from a manuscript published in a peer-reviewed journal 
(Murphy et al. 2019). Readers requiring the use of this method are encouraged to visit the wiki associated 
with the freely available, open-source public code repository containing compiled executable and FPGA 
bitfiles. The easiest way to understand the point of this method is to watch the supplementary video 
(Video S4.1), which illustrates the capabilities of the state machine detector to create a logical gating 
signal to include or exclude arbitrary functions of interest by setting various thresholds and toggling their 
state to include or exclude ambient noise generated by a nearby computer monitor. 

https://github.com/m053m716/Intan-DAC-State-Machine-Detector/wiki
https://github.com/m053m716/Intan-DAC-State-Machine-Detector
https://docs.google.com/presentation/d/1SEBNmNmGNk-nf_J8DU7HuIxbS7S4H04vV_jJOrTggZ8/edit#slide=id.g9b12e07795_0_0
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Main Results. A series of offline analyses showed that our implementation was able to 

appropriately trigger stimulation during epochs of biological artifacts with an overall accuracy 

between 72% and 97%, fixed computational latency of 167μs, and an algorithmic latency of 

300μs to 800μs.  

Significance. Our improvements have been made open-source and are freely available to all 

scientists working on closed-loop neuroprosthetic devices. Importantly, the improvements are 

easily incorporated into existing workflows that utilize the Intan Stimulation and Recording 

Controller. 
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Introduction 

Recent preclinical work has investigated the feasibility and efficacy of intracortical 

microstimulation (ICMS) coupled to neural activity to promote rehabilitation after brain injury 

(Azin et al. 2011a, 2011b; Guggenmos et al. 2013). In brain-injured rats, constraining the timing 

of ICMS to within a few milliseconds of a detected extracellular action potential recorded in a 

second area improves motor skill beyond that achieved by randomly timed stimuli (Guggenmos 

et al. 2013). This ICMS paradigm, known as activity-dependent stimulation (ADS), has also 

been used in healthy macaques to pair sites within the motor cortex in order to alter the evoked 

EMG output (Jackson et al. 2006). The efficacy of these protocols relies both upon the accuracy 

of the spike detector and upon the reliability of subsequent low-latency (<10 ms) delivery of 

ICMS. Furthermore, because the invoked strengthening of connections between sites is thought 

to be generated by a Hebbian mechanism, low jitter in the delivery of stimuli (<1 ms) is critical; 

for example, the difference in timing between invoking maximal potentiation and maximal 

depression of synaptic efficacy in hippocampal cultures is <5 ms (Bi & Poo 1998). Depending 

upon the distance, type, and number of synapses that are putatively involved between the 

targets of ADS, it is also possible that the <10 ms latency constraint may be restricted to as low 

as <3-4 ms. 

Historically, spike detection has been performed by applying a monopolar voltage threshold to 

the amplified and filtered neurophysiological signal, counting each rising edge of the resultant 

logical signal as the onset of a spike (Cheney & Fetz 1985). However, spike detection done in 

this way tends to conflate signals generated by movement and chewing with spikes from neural 

units when used in awake animal experiments, due to the similar frequency characteristics and 

larger amplitude of the former. For ADS, which relies upon the specific pairing of 



139 

neurophysiological activity between two sites, non-specific stimulation due to biological noise 

sources would be obviously problematic. 

Although many algorithms that are superior to monopolar voltage thresholds now exist and are 

easily implemented in various software packages for spike detection and sorting, the latency 

required in communicating with a host device can be prohibitive for ADS. Previously, ADS had 

been implemented in lightweight telemetric devices using an application-specific integrated 

circuit (Azin et al. 2011a, 2011b). However, for a long-term neurophysiological data acquisition 

solution, a more flexible architecture that can simultaneously acquire signals from hundreds of 

channels would be desirable. In addition, due to the timing constraints mentioned previously 

(<10 ms latency between detection and stimulation; <1 ms jitter in stimulus delivery), software 

solutions that involve a USB chain cannot be used. Therefore, the most tenable solutions need 

to be implemented algorithmically in hardware, such as through a field programmable gate array 

(FPGA), a PCIe card interfaced through an ethernet connection, or some other comparable 

digital signal processing unit. 

Recently, the commercial availability of high-gain, high-resolution custom amplifier integrated 

circuits (Harrison 2007; Harrison & Charles 2003), which interface to a host device through a 

serial parallel interface (SPI) has made it possible to construct relatively inexpensive 

neurophysiological acquisition systems that scale to high numbers of recording channels. These 

systems, such as the acquisition system provided by Intan or the Open-Ephys acquisition board 

(Siegle et al. 2017), use an FPGA to run the SPI that controls the amplifier chip while 

maintaining a buffer for USB communication with a host computer. Several proposed spike 

detection and spike sorting techniques take advantage of the FPGA, an integrated circuit that 

the end-user can reconfigure (Biffi et al. 2010, Gibson et al. 2013, Park et al. 2017, Vallicelli et 

al. 2017). Implementing the detection and sorting circuit on an FPGA allows the use of 

neurophysiological spiking as a reliable control signal in real-time, with low-latency; however, 
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most implementations require custom integration with respect to the design of the full data 

acquisition circuit, which typically varies from laboratory to laboratory. 

Here, we implemented a spike detection state machine designed to provide multiple threshold 

windows, reducing the likelihood of activity from sources other than spiking neural units on a 

single channel leading to the delivery of stimulation. The algorithm reduces the erroneous 

detection of spikes during biological noise in awake animals using an intuitive algorithm that 

requires minimal computational power. The implementation is conveniently designed to work as 

a modification to the existing open-source code provided by Intan for use in conjunction with 

their low-cost commercial platform for neurophysiological data acquisition and stimulus delivery. 

Importantly, the system allows the application of ADS with a fixed minimum latency <1 ms and 

has the potential to scale to a high number of channels in future design iterations. 

 

Figure 4.1: Overview of system architecture and implementation.  

An amplifier chip is interfaced to the field-programmable gate array (FPGA), via a serial-

parallel interface (SPI). N electrode channels are routed to a high-gain amplifier. On board the 

FPGA, amplifier data from the FIFO buffer are piped to the host device via a USB interface. 

The digitized signals from any selected combination of amplifier channels (blue) can also be 

routed to up to 8 digital-to-analog converter (DAC) channels, where threshold comparator 
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logic can be applied with sub-millisecond latency. In this example, 4 threshold windows are 

applied to the filtered data stream from amplifier channel 1. 

 

Methods 

Hardware architecture 

The hardware architecture of the acquisition system and spike detector consists of three core 

components (Figure 4.1): 

1. Headstage: an amplifier circuit connected to a microelectrode array with an arbitrary 

number N of physical microelectrode leads placed near the neural substrate of interest; 

2. FPGA: an interface that allows the amplifier circuit to multiplex both the incoming 

microelectrode signals and any outgoing stimulation commands to the appropriate 

microelectrodes; and, 

3. Host: a general-purpose computer that provides an interface to the system, allowing the 

user to select the desired microelectrode channels and how a closed-loop stimulation 

scheme will be implemented. 

This implementation used a commercially available integrated circuit and pre-assembled 

headstage (RHS2116; Intan Technologies, Los Angeles, CA, USA) to connect to the 

microelectrodes. To interface with this circuit, we used the Intan Stimulation/Recording 

Controller, which consists of an FPGA evaluation board (XEM6010-LX45; Opal Kelly Inc., 

Portland, OR, USA) equipped with a Xilinx Spartan 6 FPGA (XC6SLX45-2; Xilinx Inc., San 

Jose, CA, USA), a 128-Mbyte SDRAM chip, a 100-MHz clock source, I/O connectors, and a 

USB 2.0 interface chip capable of streaming data to a host computer at rates exceeding 20 

https://docs.google.com/presentation/d/1SEBNmNmGNk-nf_J8DU7HuIxbS7S4H04vV_jJOrTggZ8/edit#slide=id.g9553b09fda_0_6
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Mbyte/s. A desktop personal computer (Z230; Hewlett-Packard, Palo Alto, CA, USA) running 

Windows 7 (Microsoft, Redmond, WA, USA) was used to control the USB chain. 

Intan provides a hardware design that embeds the open-source USB/FPGA interface developed 

by Opal Kelly. This design makes it possible to read and modify registers of the RHS2116 from 

a host computer. It consists of verilog Hardware Description Language (HDL) code written for 

the XEM6010-LX45 evaluation board. This code is synthesized using the free Xilinx ISE 

WebPack software. The resulting bitfile is locally stored on the board in a dedicated Flash 

memory and can be updated through the USB interface. It is loaded on the Spartan-6 FPGA at 

each power-up, allowing the FPGA to interpret commands and parameters issued by the user 

from the USB chain. 

At its core, the USB/FPGA design provided by Intan is a state machine that controls SPI buses 

on up to eight peripheral RHS2116 amplifier circuits. The interface also contains a module that 

implements a short-latency threshold comparator on up to eight channels of digitized amplifier 

data streams routed to 16-bit digital-to-analog converters (DAC; AD5662; Analog Devices, 

Norwood, MA, USA) mounted on the evaluation board. The comparator logic state is routed to a 

TTL output wire that corresponds to the DAC channel number. The DAC module also 

implements a single-pole high-pass filter (HPF) on the selected amplifier data stream. 

A second module, also included in the existing Intan USB/FPGA interface, contains a state 

machine that controls the delivery of ICMS to a selected amplifier channel. The module can be 

configured through the GUI to deliver stimuli on the rising or falling edge of a TTL input signal. 

Thus, by physically connecting pairs of TTL inputs and outputs, “closed-loop” stimulation based 

on the detection of threshold-crossing events (in this case, extracellular action potentials, or 

spikes) is already possible using the USB/FPGA interface as provided by the vendor. 



143 

The main contribution described herein is the addition of a state machine for spike detection that 

offers improved artifact rejection, while taking advantage of the short-latency comparator in the 

DAC module of the existing USB/FPGA interface. Importantly, we sought to make as few 

changes as possible to the existing toolkit provided and validated by the commercial vendor, in 

the hopes that any changes we introduced could be more easily integrated to existing 

workflows. Overall, the changes amount to an increase of 408 flip flops compared to the 

originally synthesized architecture, well within the bounds of the available resources on the 

XEM6010-LX45. 

Software interface 

Software was modified from the original open-source C/C++ code provided by Intan 

Technologies for use with the RHS2116 amplifier IC, retaining many similarities with the original. 

The software implements a GUI, which provides a front-end to the USB/FPGA interface. 

Modifications described in the present study were added using Qt (version 5.8). Applications 

were compiled for Windows 32- and 64-bit operating systems using compilers for Microsoft 

Visual Studio 2015. This modified GUI includes a tab that allows configuration of the DAC 

(Figure 4.2A, left panel) and the popup window for visualizing spikes is altered to accommodate 

online specification of each of the four parameters for each DAC channel used in the state 

machine detector, as described in Figure 4.2A. 

https://docs.google.com/presentation/d/1SEBNmNmGNk-nf_J8DU7HuIxbS7S4H04vV_jJOrTggZ8/edit#slide=id.g96917a2de7_0_4
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Figure 4.2: Spike detection state machine  

A) Left: Example of a spike that would be included (black) and waveforms that would be 

rejected (grey) by the three state machine levels depicted (L1, L2, and L3, denoted by 

corresponding thresholds a1, a2, and a3). The dark-grey waveform exceeds the red exclusion 

threshold (a3), while the light-grey waveform does not meet the second blue inclusion 

threshold (a2). The black spike is included because the absolute value of its negative 

component does not exceed the absolute value set by a3, while the absolute value of its positive 

component exceeds the level set by the second blue inclusion level a2. The parameters (a-e) are 

defined by the user during acquisition and are illustrated for the red exclusion level shown. 

Right: state flow diagram for the spike detection state machine. By default, the detector is in 

the idle state (grey), but transitions to active (black) as soon as the data stream fulfils the 

parameters for the earliest window (magenta). If the waveform meets all criteria specified by 

the defined levels, the state switches to trigger (orange), then automatically reverts to idle. 

B) Threshold logic in the DAC module. For each of the 8 DAC channels, the corresponding 

parameters determine if the machine is within the start and stop points of the window, relative 

to when the counter started, as well as whether it crossed the threshold (depending on threshold 

polarity). 

C) Active and idle counter incrementing logic. If the data stream meets criteria of each enabled 

level that applies to the current counter value, the counter is advanced by 1. 
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Spike detection state machine 

The core of the spike detection state machine is a simple logic cycle that runs in the main 

module of the USB/FPGA interface (Figure 4.2A, right). The state machine allows up to 8 

threshold levels (Li, where i is an integer from 1 to 8) with the following user-defined parameters 

(Figure 4.2A, left): 

● Threshold, ai, refers to the voltage value (μV) that the signal must pass through to count 

as a crossing. If the threshold is negative, then a crossing occurs when the signal value 

is less-than or equal-to the threshold value (Figure 4.2B, multiplex logic). If the threshold 

is positive, then a crossing occurs when the signal is greater-than or equal-to the 

threshold value. This number is an unsigned 16-bit integer, which is limited between -

5,000 μV and +5,000 μV, based on the dynamic range and scaling of the amplifier and 

DAC. 

● Start, bi, refers to the (inclusive) onset sample of the window Li. If the state machine 

counter is less than this value, the threshold conditions for the specified window will not 

be considered in the state machine logic. The state machine switches from idle to active 

(as defined below) once the filtered amplifier data stream routed to DAC channel i meets 

the criteria for Li, if bi = 0. 

● Stop, ci, refers to the (exclusive) end sample of the window Li. If the state machine 

counter is equal or higher than this value, the threshold conditions for the specified 

window will not be considered in the state machine logic. The maximum stop value, cmax, 

defines the total duration of the spike detection state machine.  

● Type, di, refers to the amplitude bounding for window Li. It depends upon the polarity of 

the threshold. A value of zero corresponds to an “include” type window, which means 

that the signal must be less than a negative threshold or greater than a positive 

threshold while the state machine counter is within the range defined by the start and 

https://docs.google.com/presentation/d/1SEBNmNmGNk-nf_J8DU7HuIxbS7S4H04vV_jJOrTggZ8/edit#slide=id.g96917a2de7_0_4
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stop samples (Figure 4.2C). A value of one corresponds to an “exclude” type window, 

which enforces the opposite conditions (signal must be greater than a negative threshold 

or less than a positive threshold). 

● Enable, ei, refers to whether window Li is involved in the decision circuit for the state 

machine. The state machine can run with as few as 1 and as many as 8 windows 

enabled. 

In the specific example of Figure 4.2A, we have defined three levels (e.g. L1, L2, and L3), where 

a1 and a2 are the blue ‘inclusion’ thresholds (d1 = d2 = 0) and a3 is the red exclusion threshold 

(d3 = 1). Therefore, the dark-grey spike, which crosses threshold a3, is excluded, but the black 

spike is not. Likewise, the light-grey spike, which does not cross the a2 blue ‘inclusion’ threshold 

is also excluded. In total, the state machine runs for cmax samples, starting whenever the state is 

‘idle’ and the filtered signal is less than a1. 

The state machine increments a counter on the rising edge of the sample clock depending upon 

its current state, which is always in one of these three conditions: 

1. idle, when one or more of the level criteria is not met or no DAC channel is enabled 

(Figure 4.2A, grey); 

2. active, when the criteria for each enabled DAC with a start value less than or equal to 

the current sample index and a stop value greater than the current sample index channel 

is true (Figure 4.2A, black); or, 

3. trigger, when the counter equals the largest enabled DAC window stop value (Figure 

4.2A, orange). 

The counter increments only when the state machine is in the active state, and resets to zero 

any time it enters the idle state (Figure 4.2A; right). If the state machine reaches the trigger 

state, it returns to the idle state on the ensuing sample clock cycle. Each state of the machine is 

https://docs.google.com/presentation/d/1SEBNmNmGNk-nf_J8DU7HuIxbS7S4H04vV_jJOrTggZ8/edit#slide=id.g96917a2de7_0_4
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reported by the high state on a unique pair of TTL output and input wires (see Supplementary 

section S4 for details). 

Surgical implant and recording for in vivo testing 

All protocols for animal use were approved by the Kansas University Medical Center Institutional 

Animal Care and Use Committee in compliance with the Guide for the Care and Use of 

Laboratory Animals (Eighth Edition, The National Academies Press, 2011). Briefly adult male 

Long Evans rats were anesthetized using a combination of ketamine and xylazine as described 

previously (Nishibe et al. 2010). A laminectomy was performed to minimize edema during the 

procedure. Five 00-80 stainless steel skull screws were fixed around the perimeter of the skull 

to improve attachment of the dental acrylic cap. Using stereotaxic coordinates, a craniectomy 

was made over the sensorimotor cortex of the left hemisphere. Microwire arrays were 

positioned to span the rostral forelimb area (RFA), caudal forelimb area (CFA), and forelimb 

sensory cortex (S1), which was confirmed by a brief ICMS mapping procedure before insertion 

to a depth of approximately 1500 μm. An external silver wire on each array was tied to the same 

skull screw placed in the interparietal bone, which acted as a common ground. In the rat used 

for session A (recording sessions described below), the microwire array was a custom in-house 

design consisting of 32 channels of 33 μm diameter polyimide-coated tungsten wire (California 

Fine Wire Co., Grover Beach, CA), which were distributed throughout RFA, CFA, and S1 in a 

non-uniform grid pattern. The rat used for sessions B and C was implanted with a commercial 

microwire array (MicroProbes for Life Science, Gaithersburg, MD) consisting of 16 channels of 

nickel-chromium alloy 50 μm diameter wires arranged in a 4x4 grid with 250 μm site spacing 

implanted in S1. Qualitatively, spiking activity from both datasets was similar, but session A 

contained a few channels with large, stereotyped spikes, while spikes tended to be smaller in 

amplitude for sessions B and C. Prior to each recording, the rat was placed under anaesthesia 
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via isoflurane induction, and subsequently one channel located within RFA was used for 

recording, while a single S1 channel was used in any stimulation sessions Electrode 

impedances ranged from 750 – 1,500 kΩ at recording sites. Recordings were made in 3- to 5-

minute blocks during and after recovery from anaesthesia. 

Recordings were made during three separate sessions. Recording sessions were assigned the 

codes ‘A,’ ‘B,’ and ‘C.’ The main features and how these data were used within the current work 

are summarized in Table 4.1. Session A was taken from a first rat, three days after implantation, 

and contains a single epoch in which no stimulation was performed, which was used for 

subsequent offline characterizations due to the presence of large, stereotypical spike 

waveforms and low noise floor (RMS 18.6 μV, rectified median 11.3 μV). Sessions B and C 

were taken from a second rat approximately three months after the implantation. Session B 

tested the latency between spike detection using the state machine and onset of stimulation. 

Session C tested the online performance of the spike detection state machine using ad hoc 

parameters selected while the experiment was ongoing (e.g. to mimic a typical use case). 

Specific parameters for each recording session are reported in detail in Table S4.1; sub-indices 

indicate identical recording data that was re-run offline using a simulated test bench to 

characterize performance. To identify chewing periods (which bias performance toward false 

positive spike detection due to the presence of high-amplitude biological noise), a simultaneous 

video stream was synchronized with the neurophysiological data from session C through co-

registration of a flashing LED that was tied to a digital input on the acquisition board. 

https://docs.google.com/presentation/d/1SEBNmNmGNk-nf_J8DU7HuIxbS7S4H04vV_jJOrTggZ8/edit#slide=id.g96917a2de7_0_83
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Table 4.1: Summary of recording data sets taken from rats.  

Recordings were taken from awake, ambulatory rats implanted in RFA and S1. Columns 

describe whether stimulation was used, the main feature that distinguishes that recording 

dataset from the others, and the reason the recording was used in this study. 

 

Offline performance testing 

Performance of the spike detection state machine was evaluated by comparing offline detection 

of spikes from the in vivo data from session A, either using a monopolar threshold detector or 

the state machine detector. To ensure that the analyses accurately captured online 

performance, we first validated the fidelity of the reconstructed recorded signals by ensuring that 

the DAC amplifier data stream and digital logic state streams recorded in vivo during session C 

matched those generated by the offline DAC filter and state machine simulation. Simulations 

were performed using test benches compiled in verilog, MATLAB (R2017a+), and Simulink 

(R2018b), as described in the supplementary methods section. The test benches are included in 

the online code repository along with the modified software and hardware code. Once we 

verified that there was no difference in the simulated digital logic state signals and the recorded 

ones, we used the DAC amplifier data stream recorded from session A to simulate the spikes 
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detected using both a single-threshold detector (A0) as well as all events that entered the active 

and trigger states using the state machine detector (A1). For the monopolar threshold detector, 

spikes were only counted on the logical rising edge of the threshold crossing. Selection of a 

monopolar threshold was fixed at 40 μV, which was initially determined online by visual 

inspection of the spike scope to set a level that appeared qualitatively to reject noise while 

accepting most multi-unit spiking. 

To characterize the ability of the spike detection state machine to reject artifact while still 

detecting viable spikes we calculated accuracy, defined as the ratio of the sum of correctly 

classified spikes (true positives; TP) and correctly classified artifacts (true negatives; TN) to the 

total number of spikes and artifacts detected. To determine whether spikes or artifacts detected 

during a simulation were correctly classified, a set of target classifications for spike and artifact 

waveforms were obtained offline using manual sorting to group similar waveforms. This 

consisted of a cluster cutting technique in which the spikes and artefactual waveforms were 

assigned iteratively through the manual selection of waveforms from the candidate set of 

waveforms detected as either spikes or artifacts by the detector, similar to the technique 

described in (Harris et al. 2000). While this method of classifying multi-unit spike waveforms has 

limitations depending on the amplitude of units under consideration (Harris et al. 2000), the 

purpose was to illustrate the ability of the spike detection state machine to reject artifactual 

waveforms, a situation for which an experienced operator is well-suited. 

To verify our results on a dataset in which the ground truth spike times are already known, we 

synthesized an additional set of recordings (C3, in which a threshold detector was applied, and 

C4, in which the state machine detector was applied; parameters in Table S4.1). In these 

simulations, known spike waveforms were added to a non-spiking recording channel at 1,500 

uniformly sampled random samples throughout the duration of the sample record. It should be 

noted that in these simulations, identical recordings can yield slightly different numbers of total 

https://docs.google.com/presentation/d/1SEBNmNmGNk-nf_J8DU7HuIxbS7S4H04vV_jJOrTggZ8/edit#slide=id.g96917a2de7_0_73
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detected spike and artifact waveforms depending on which spike detection procedure was 

simulated even if the initial inclusion threshold is the same for the state machine detector and 

the threshold detector: because the state machine has a minimum duration that requires 

multiple samples in order to detect the spike, probabilistically there are more opportunities to 

identify candidate spike and artifact waveforms when using a single-threshold detector, 

potentially leading to a slightly higher number of total event classifications when using the 

monopolar threshold detector.  

After either sorting the detected spike and artifact waveforms to obtain the target classifications 

or using the a priori known ground truth spike times as targets, performance was obtained using 

confusion matrices to compare the detected outputs (e.g. spikes or artifacts) against the target 

outputs (e.g. spike or artifact classifications of the detected outputs using offline sorting). 

Sensitivity (or true positive rate; TPR) was estimated as the ratio of correctly classified spikes to 

the sum of correctly classified spikes (true positives; TP) and outputs given as artifacts that 

were determined to be spikes by offline sorting (false negatives; FN). True negative rate (TNR) 

was estimated as the ratio of correctly classified artifacts (true negatives; TN) to the sum of 

correctly classified artifacts and outputs given as spikes that were determined to be artifacts by 

offline sorting (false positives; FP). Precision (positive predictive value) was estimated as the 

ratio of true positives to the sum of true positives and false positives. The false discovery rate 

(FDR) was estimated as the ratio of false positives to the sum of true positives and false 

positives. The false negative rate (FNR) was estimated as the ratio of false negatives to the sum 

of true positives and false negatives. These last two metrics (FDR and FNR) were of special 

interest, as we aimed to reduce FDR while maintaining a low FNR. 
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Figure 4.3: Qualitative performance of the implemented spike 

detection.  

A) 200ms of high-pass filtered data from session C during single-threshold (-40μV; simulation 

C2) spike detection. Red box represents a 130-ms epoch of chewing. Red highlighting (false 

positive) indicates spikes that were wrongly detected. Blue highlighting (true positive) shows 

spikes that were correctly identified. B) Same data as in panel A with superimposed detections 

from the state machine spike detector. Green highlighting (true negative) indicates artifacts 

that were correctly rejected by the state machine. Grey highlighting (false negative) indicates a 

case of true spike not detected by the state machine. C) Random sub-sampling of 250 detected 

(magenta) and 250 rejected (grey) waveforms using the spike detection state machine in real-

time (recording C0), using the digital outputs from the online state machine. Flat lines 

represent threshold levels. Black spots represent inclusive samples that must meet the 

threshold criteria, while ends of lines are open to represent the non-inclusive threshold 

criterion. Cyan thresholds must be exceeded, whereas red thresholds must not be exceeded. D) 

An offline reconstruction (recording C1) was used to simulate the state machine using different 

window parameters. This random sub-sampling of 250 detected and 250 rejected waveforms 

indicates how the parameters could be set differently to isolate spikes from a different unit. 

Note that increasing the duration of the state machine also increases the total time to detection. 
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Results 

Ability to detect waveforms of interest 

An important feature of the spike detector state machine is the ability to identify relatively low-

amplitude spikes during epochs that contain periods of relatively high-amplitude biological 

artifact. Biological noise, such as arises from mechanical vibration and EMG that occur during 

chewing and whisking, leads to large-amplitude, high-frequency (>300 Hz) deflections in the 

signals observed on electrodes embedded within the cortex. To illustrate this, we isolated a 

short example epoch from recording session C in which the presence of chewing was verified 

by synchronizing the electrophysiological data stream with video of the rat moving freely in the 

recording chamber. While these epochs of activity are likely generated by biological sources, 

they may still be undesirable during motor recordings designed to study neurophysiological 

spiking of units related to other motor behavior (i.e. forelimb movement during pellet retrievals). 

Unfortunately, the simple threshold detector produces many false-positive spike detections 

during such epochs (Figure 4.3A, red highlighting). By contrast, the state machine detector is 

still able to correctly detect spikes (Figure 4.3B, blue highlighting) during the noisy periods 

without mistakenly triggering from the same waveforms that are problematic for the threshold 

detector (Figure 4.3B, green highlighting). Even within a single recording session and on a 

single recording amplifier channel, it was possible to distinguish between substantially different 

spike waveforms by customizing the parameters sent to the spike detection state machine 

online. Parameters that were selected online (recording C0, Table S4.1) captured the smaller 

multi-unit activity (Figure 4.3C), whereas offline adjustment of parameters led to the ability to 

isolate waveforms from the larger of the two units (Figure 4.3D). Importantly, the ability to set 

the level parameters in real-time, thanks to the modified GUI (Figure S4.2), improved ease-of-

use compared to existing systems, in which a “training” recording must first be obtained and 
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analysed offline before allowing parameters to be set (Azin et al. 2011a, 2011b, Guggenmos et 

al. 2013). 
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Figure 4.4: Typical performance compared to offline sorted spikes 

A) Confusion matrix for comparison of online spike detection state machine performance after manual offline 

sorting of spike and artifact waveforms (recording C0). The blue box contains the number of true positive spikes 

and the percentage of the overall detected events that fit this category. The salmon box contains the number of 

false positive spikes detected by the algorithm, as determined by manual sorting. The grey box indicates the 

number of rejected spikes (which entered but did not complete the state machine) that were scored offline as 

spikes. The green box represents waveforms that were rejected by the state machine and were also classified 

manually offline as artifact. The top row on the far-right column show the positive predictive value (PPR) in blue 

and false discovery rate (FDR) in red. The second row on the far-right column shows the negative predictive 

value (NPV) in blue, and the false omission rate (FOR) in red. The first column on the bottom of the matrix show 

the sensitivity (or true positive rate, TPR) in blue and the false negative rate (FNR) in red. The second column on 

the bottom of the matrix shows the true negative rate (TNR) in blue and the false positive rate (FPR) in red. The 

box in the bottom right of the plot shows the overall accuracy (ACC) in blue and its complement (the error 

percentage, ERR) in red. B) Offline sorting used for comparison. Lighter regions indicate a higher density of 

waveforms passing through those voltage values. Spikes were manually sorted using cluster cutting to separate 

units into characteristic waveforms. Magenta outline indicates spike profile used for offline sorting in panel A. 

Bottom two panels (FP-1 and FP-2) are characteristic waveform types that sometimes passed the state machine 

conditions, contributing to the number of false positives.  

 

Performance in awake ambulatory rats 

To quantify the online performance of the state machine we performed manual offline sorting of 

spike and artifact waveforms (from session C). We considered the offline sorting as ground 

truth, which allowed us to compute confusion matrices comparing the online classification (e.g. 

spike or artifact) to the offline sorted classification for the same waveform for each monopolar 

threshold crossing (Figure 4.4). The number of spikes correctly detected by the online spike 

detector state machine was 2,163 out of 2,582 (meaning a sensitivity, or true positive rate, of 

83.8%). The number of true negatives (i.e. artifacts not detected as spikes) was 40,188 out of 

40,835 (meaning a specificity, or true negative rate, of 98.4%). The number of artifacts 

incorrectly classified as spikes was 647, resulting in a 23% false discovery rate (FDR) for the 

online spike detector state machine. Artifacts that led to false-positives contained qualitative 

similarities with the spikes of interest, which may account for this value (Figure 4.4B, FP-1 and 
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FP-2). Overall, the online accuracy of the spike detector state machine was 97.5% (Figure 4A; 

recording C0), which is inflated by a high number of true negative samples due to the relatively 

large number of artifacts passed by the monopolar threshold. In practice, this could be mitigated 

using a monopolar threshold set to a much higher value; however, while increasing the 

threshold could reduce the number of artifacts falsely detected as spikes, it would also reduce 

the number of true positive spikes and is therefore not a feasible solution. Indeed, even the 

synthetic insertion of large-amplitude (-150μV peak) spikes at known times to a non-spiking 

channel results in an FDR of 90.5% for a monopolar threshold of -100 μV, while the state 

machine detector yielded an FDR of 29.3% and overall accuracy of 72.2% (Figure S4.3).  

Using a channel selected for its low noise floor and large-amplitude spike waveforms recorded 

in vivo (session A), we computed the same performance measures used in the previous case 

(Figure 4.5A). Performance overall was comparable (97.1% accuracy) due to the large number 

of correctly rejected waveforms. However, careful parameter selection also yielded an improved 

FDR (6.9%) and FNR (2.8%) for the state machine spike detector under these ideal conditions. 

We compared the best-case performance of our state machine detector to a monopolar 

threshold detector. Using identical recordings, there is a dramatic improvement in the FDR 

when using the state machine detector (189 artifacts characterized as spikes, of a total 2,075 

spikes detected online, Figure 4.5B) compared to the monopolar threshold detector (2,770 

artifacts characterized as spikes, of a total 7,075 detected spikes, Figure 4.5B). This 

improvement results from the rejection of artifactual waveforms, such as occur during epochs of 

biological noise (e.g. chewing, Figures 4.3A, 4.3B). 

https://docs.google.com/presentation/d/1SEBNmNmGNk-nf_J8DU7HuIxbS7S4H04vV_jJOrTggZ8/edit#slide=id.g96917a2de7_0_16
https://docs.google.com/presentation/d/1SEBNmNmGNk-nf_J8DU7HuIxbS7S4H04vV_jJOrTggZ8/edit#slide=id.g96917a2de7_0_55
https://docs.google.com/presentation/d/1SEBNmNmGNk-nf_J8DU7HuIxbS7S4H04vV_jJOrTggZ8/edit#slide=id.g96917a2de7_0_22
https://docs.google.com/presentation/d/1SEBNmNmGNk-nf_J8DU7HuIxbS7S4H04vV_jJOrTggZ8/edit#slide=id.g96917a2de7_0_22
https://docs.google.com/presentation/d/1SEBNmNmGNk-nf_J8DU7HuIxbS7S4H04vV_jJOrTggZ8/edit#slide=id.g96917a2de7_0_22
https://docs.google.com/presentation/d/1SEBNmNmGNk-nf_J8DU7HuIxbS7S4H04vV_jJOrTggZ8/edit#slide=id.g96917a2de7_0_10
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Figure 4.5: Ideal performance compared to offline sorted spikes and 

monopolar threshold detection. 

A) Simulated performance using an ideal in vivo recording with large spikes (recording A1). 
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Although the simulated performance is applied to a channel with high-amplitude spike 

waveforms, the overall accuracy effectively remains consistent. This is due to the relatively 

large proportion of waveforms that are correctly rejected (middle box). B) Manual offline 

sorting performed for recording A1 (presented in panel A), as well as a comparison to 

performance of true (blue) to false (salmon) discoveries for the state machine detector and a 

simple threshold detector for the same dataset (recording A0). 

 

Mean latency from spike peak to stimulus delivery 

The total latency for an activity-dependent stimulus can be considered as the sum of the 

algorithmic latency (to reliably detect an event) and the computational latency (due to the 

system). Algorithmic latency, in this case, depends on the maximum number of samples needed 

to detect a spike. In this work, spikes were detected using state machines that varied between 

300μs (session B; 9 samples at 30 kHz sample frequency) and 800μs (session C; 24 samples 

at 30 kHz sample frequency). Therefore, the exact algorithmic latency is specific to the 

parameterization of the user-defined threshold levels. Our work did not alter the computational 

latency between the event detection and the delivery of the stimulus. During session B, the 

Intan Stimulation/Recording Controller stimulation sequencer module delay was set to zero 

milliseconds, allowing us to estimate the computational latency as the minimum latency 

between the rising edge of the virtual TTL input corresponding to the trigger state of the spike 

detection state machine and the onset of stimulus artifact. The computational latency obtained 

in this way was 167μs (5 samples at 30 kHz sample frequency; Figure S4.1). Therefore, the 

total latency of the system during spike detection was reliably less than 1 ms, mainly due to the 

algorithmic latency, and indicates that the detector is responsive on a timescale that is both fast 

and reliable enough to be used for performing ADS. 

https://docs.google.com/presentation/d/1SEBNmNmGNk-nf_J8DU7HuIxbS7S4H04vV_jJOrTggZ8/edit#slide=id.g96917a2de7_0_38
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Discussion 

We developed a modified version of an open-source commercial system to implement closed-

loop stimulation with sub-millisecond latency. The main improvement is the implementation of a 

spike detection state machine with an interface that allows the application of eight 

reconfigurable thresholds to any combination of different or identical amplifier channels. The 

implemented state machine slightly reduces sensitivity (i.e. true positive rate, Figure 4.4A), but 

drastically improves specificity (i.e. reduced FDR; Figures 4.5A, 4.5B), which may be critical in 

designing closed-loop electrical stimulation paradigms in the central nervous system in vivo. 

This improvement in selectivity is particularly important when the stimulation paradigm must be 

implemented during ongoing natural behavior, such as chewing or whisking (Figure 4.3). 

Although the focus of this study was on applying the improved detector for use in ADS, we 

envision that this type of low-latency, highly-selective discriminator could be useful in a range of 

closed-loop applications. For example, feedback needs not be delivered in the form of 

stimulation pulses but could instead be incorporated as a part of the experimental design itself, 

such as the delivery of a reward contingent upon the discrimination of a unique spike waveform 

(Koralek et al. 2012). However, the context of developing closed-loop neuroprostheses for 

applications such as neurorehabilitation provides important constraints. For example, a critical 

aspect of the ADS paradigm is the timing of stimuli based on the detection of a stereotyped 

waveform that represents a small group of cells near the recording microelectrode (Guggenmos 

et al. 2013). Therefore, it is desirable to minimize the FDR while maintaining a detection 

algorithm that can be implemented with low latency and customizable sensitivity to maximize 

the chances of invoking Hebbian mechanisms of plasticity between cells at the detection site 

and those at the stimulation electrode (Bi & Poo 1998). It is possible that such a stimulation 

regime could be augmented by incorporating multiple stimulation sites at offset latencies from a 

https://docs.google.com/presentation/d/1SEBNmNmGNk-nf_J8DU7HuIxbS7S4H04vV_jJOrTggZ8/edit#slide=id.g96917a2de7_0_16
https://docs.google.com/presentation/d/1SEBNmNmGNk-nf_J8DU7HuIxbS7S4H04vV_jJOrTggZ8/edit#slide=id.g96917a2de7_0_22
https://docs.google.com/presentation/d/1SEBNmNmGNk-nf_J8DU7HuIxbS7S4H04vV_jJOrTggZ8/edit#slide=id.g96917a2de7_0_10
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single trigger source; this is also possible using the system presented in this study. Similarly, 

although not tested here, the modifications presented can apply simultaneous thresholds to 

several spatially distributed sites simultaneously. This provides a practical way to mitigate the 

large, non-neural sources of noise that result from a failure in the common-mode rejection, 

which are typically present on multiple channels simultaneously.  Future versions of the 

discriminator presented here that scale to an arbitrarily large number of thresholds could then 

be useful in sorting using tetrodes or other high-density arrays. 

With the rising interest in applications of closed-loop technologies for stimulation of the central 

nervous system (Levi et al. 2018), a number of methods for implementing closed-loop 

stimulation have been made openly available. These include software packages, such as 

Falcon (Ciliberti & Kloosterman 2017), the Open Ephys GUI (Siegle et al. 2017), and 

NeuroRighter (Newman et al. 2012); however, software implementations of online spike 

detection and triggered stimulation typically suffer from the latencies imposed when performing 

serial communication with the host computer. One exception is the Real-Time eXperiment 

Interface (RTXI, (Patel et al., 2017)); however, because the system is designed to operate using 

a National Instruments Data Acquisition card (NI-DAQ), it may be difficult to scale to a very high 

channel architecture. On the other hand, the ADC of the RHS2116 is scalable, and because 

digitization occurs very close to the source (on the headstage), yields improved noise 

characteristics. 

Hardware implementations, such as the synthesized bitfile that can be readily uploaded to 

effectively transform an FPGA into a commercial neurophysiological acquisition system, are not 

as widely distributed. Because hardware implementations typically have very specific design 

constraints and are optimized to meet those constraints, it is impractical to develop and 

distribute open-source hardware for closed-loop neuroprosthetics. Just as the RTXI system is 

not readily compatible with the Intan amplifier chips, hardware implementations (Ambroise et al. 
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2017, Buccelli et al. 2019) are designed to interface with in vitro microelectrode arrays that 

interface to an FPGA with different input and output pin configurations, making it difficult to 

provide a ubiquitous hardware bitfile for every experimental setup. Alternatively, moving from a 

hardware implementation in an FPGA to a custom application specific IC (and subsequent 

commercialization) becomes more practical for individual applications. 

To minimize changes to the existing open-source software provided by Intan, the spike 

detection state machine was implemented in the DAC module. This imposes the limitation that 

only one spike detection state machine can run at a time. At a maximum, up to eight different 

amplifier channels could be polled for synchronous or near-synchronous events, or eight 

threshold criteria could be applied to the waveform of a single amplifier channel. Making 

substantial modifications to the existing FPGA might allow scaling of a spike detection state 

machine module to any arbitrary number of thresholds on different channels. A natural 

extension of this work would be to scale up the number of trigger sources for multi-stream ADS, 

particularly as FPGA evaluation boards with increased on-board resources become available. 

Generalizing the state machine to a higher number of independent channels by running it as a 

module that is independent of the DAC, automating the process of setting threshold levels (e.g. 

using spike “templates”), and integrating independent state machines to allow concurrent 

detection of events in multiple frequency ranges are currently being investigated to improve their 

application in closed-loop neuroprosthetic interfaces. Automating the process of setting 

threshold levels, especially as channel counts scale up, will be important, as the improved 

rejection may also reduce sensitivity, depending upon the ad hoc parameters set by the 

operator. Algorithmically, the state machine is fundamentally similar to the one implemented in 

(Azin et al. 2011a); however, the state machine described here allows more flexibility in the 

parameterization of each threshold level by allowing the end-user to set each of the following 

four parameters while the application is running. 
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We have provided modifications to an existing interface for conducting electrophysiological 

experiments using closed-loop stimulation. These improvements allow spike detection to be 

performed with a higher selectivity at the expense of a reduced sensitivity. This trade-off is 

dependent upon the ad hoc selection of parameters, which can be adjusted by the experimenter 

in real-time. The architecture in which this improved spike detection state machine is 

implemented has the possibility to scale to a very high number of channels in the future, 

improving current and future functionality.  Our contribution to the original design improves the 

accessibility of investigating closed-loop stimulation paradigms, which may be necessary for 

effective, therapeutic neuroprosthetic systems. 
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Supplementary Materials 

Supplementary Figures 

 

 

Figure S4.1: Random subsample of 250 triggered stimuli from 

recording B0 

The Intan RHS Stimulation/Controller system has a built-in stimulation sequencer state 

machine, which limits the minimum latency from detection to stimulation to 5-samples, or 167 

μs when sampling at 30 kHz. The trigger spikes used for stimulation are highlighted in blue. 

Red indicates the stimulus artifact (60 μV biphasic pulse, 100μs per phase), and rebound from 

amplifier saturation. 
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Figure S4.2: Modifications to the graphical user interface (GUI).  

A) The original DAC tab was modified to create a new Discriminator tab. Parameters for the 

currently-selected DAC channel (i) are set using the spin box for start (b) and stop (c) samples, 

dropdown box that sets the type (d) as either “Include” or “Exclude,” threshold (a) spin box, 

and check box to enable (e) the current DAC channel. Other elements, such as the button to 

“Set to Selected,” are used in the same way as the previous interface (e.g. to route the selected 

amplifier channel to the highlighted DAC channel as indicated by the radio buttons on the left). 

B) (Left) The spike scope was modified as well, to accommodate the additional parameters 

described in A. (Right) Each enabled DAC channel has a corresponding window that is either 

blue (“Include”) or red (“Exclude”). Window amplitude for the current channel can be set by 

clicking within the white window, which places the level for the currently selected DAC 

channel at the mouse cursor’s current amplitude within the spike plot on the right. An “in-

action” version of the interface is shown in Video S4.1. 

 

 



170 

 

 

Figure S4.3: Performance on simulation using non-spiking channel 

with known spike profiles inserted. 
A) Overview demonstrating original data (top), spike waveforms (inset) and blue bars indicating times 

of negative peak onset to superimpose (middle), and generated waveform with known spike times 

(bottom). Red line on the bottom panel denotes the threshold (-100μV) used in panel B (for the 

threshold-detected spikes, right panel). In total, 1,500 known spike waveforms were added to the 

synthetic dataset. B) Confusion matrix for performance of both the state machine detector (left) and 

standard threshold detector (right). The state machine detector is much more robust in picking out the 

spike waveform from noise. Parameters for both detectors are listed in table S1; although the initial 

inclusion threshold for the state machine detector is lower (-70μV), it still has a much lower false 

discovery rate (FDR; 29.3% vs 90.5%). The threshold detector was only allowed to detect spikes on the 

rising edge of a signal, but still identified many more candidate waveforms despite sharing the same 

initial inclusion threshold, since the state machine detector is longer (12 samples to completion). Note 

that the threshold detector only detects spikes (it cannot classify waveforms). 
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Supplementary Tables 

 

 

Table S4.1: Parameters used during in vivo recordings.  

Three recordings (‘A’, ‘B’, and ‘C’) were taken during separate recording sessions from 

channels within RFA. Each column details parameters used online or during simulations. For 

recordings using the spike detection state machine, sub-rows within the ‘Start,’ ‘Stop,’ 

‘Threshold,’ and ‘Type’ columns correspond to parameters given for each DAC channel. 

Recording A was used for simulated performance due to the low noise floor and large, 

stereotypical spike waveforms. Recording B was used to evaluate the latency from spike 

detection to stimulation. Recording C was used to evaluate performance in a “typical use” 

scenario, where online parameters were set quickly by the operator (C0) and compared to both 

a more stringent parameterization (C1) as well as a monopolar threshold simulation (C2). In 

addition, recording C contains asynchronized video record, that allowed the verification of 

manually identified epochs of biological artifact, such as chewing, so that qualitative 

performance of the different spike detector parameterizations could be assessed. Two 

additional recordings (C3 and C4) were artificially generated by superimposing large spike 

waveforms onto an amplifier channel that did not generate much spiking activity. These 

recordings were used to allow for a known ground truth regarding spike times (Fig. S3). 
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CHAPTER 5 

Recovery vs Restitution: a matter of filter stability 

Abstract52 

The purpose of this study was to characterize injury-related changes in layer 5 neural activity of 

bilateral motor cortices during movements in the postacute period following stroke. We recorded 

extracellular field potentials from microwire arrays embedded in the contralateral rostral forelimb 

area (RFA) and the ipsilateral caudal forelimb area (CFA) with respect to the preferred forelimb 

used during pellet retrievals by ambulatory rats.  A subset of rats received a focal 

vasoconstrictive ischemia in CFA contralateral to the preferred reaching forelimb, which led to 

clear motor deficits on this task. Recordings were taken daily during behavior starting in the first 

week after the implant and continuing for four weeks. Multi-unit spiking activity was analyzed at 

the levels of individual channels, by area, and as an aggregate proxy for control dynamics that 

commonly occur during motor behavior. When the compound movements of the behavior were 

broken down into Reach and Retract phases, it was found that spike counts in RFA of the 

ipsilesional hemisphere exhibited small but statistically significant changes in average spike 

counts just prior to the Reach phase and also during the Retract phase when the Ischemia 

group was compared to Intact controls. There was no significant difference in predictive power 

for determining successful pellet retrievals when using units from either hemisphere. These 

findings suggested that while a few cells undergo changes consistent with motor learning during 

reorganization after stroke, as we had initially hypothesized, most cells do not. Surprisingly, 

                                                
52 A modified version of this chapter is in preparation for submission to Nature Communications (Pack et 

al. 2020). A manuscript that also considers these data but which did not discuss population dynamics is 
available on a public preprint server (Pack et al. 2020). It is likely that the contents of this dissertation will 
differ from the final manuscript in academic publication. The contents of this dissertation reflect the 
interpretation and opinions held by the dissertation author, which may dissent from co-authors on the 
relative importance or significance of experimental findings. 
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population-level multiple least-squares (MLS) regression to recover linearized first-order 

dynamics revealed that individual rats exhibit direct longitudinal trends between the amount of 

variance explained (R2
MLS) by the dynamical system regression and time from surgery. MLS 

regression was then constrained to impose skew symmetry on the recovered coefficient matrix, 

and the amount of variance explained by this regression (R2
Skew) was used together with R2

MLS 

and total trial duration as a movement covariate to predict daily success rates. Interestingly, the 

interaction between R2
MLS and R2

Skew was strongly predictive of the pellet retrieval success rate 

on a given day, despite the inclusion of a movement covariate in the regression model. Optimal 

performance was not directly related to first-order recursive structure in population activity 

(R2
MLS is large), but instead it required a specific kind of fixed point dynamics (R2

Skew also large). 

This result suggests that benefits observed during behavioral interventions applied during the 

postacute window may arise from diverse mechanisms that are distributed bilaterally throughout 

the network. While further work will be required to identify which synapse subtypes are involved, 

it is noted that the timing of re-emerging dynamics coincides with the approximate period in 

which sprouting axons could be expected to terminate on cortical sensorimotor targets, 

suggesting this as a critical target for future preclinical experiments in neurorehabilitation.  
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Introduction 

Despite progress in the past three decades, neurorehabilitation research has yet to pinpoint the 

system that determines the efficacy of behavioral therapy after stroke in modifying the cortical 

generation of movement. The past era was instead a period of exploration: associative animal 

models of stroke focused on the indirect correlation of time-dependent anatomical (e.g. Dancause et 

al. 2005) and physiological changes (e.g. Friel & Nudo 1998, Nudo et al. 2000) with behavioral 

covariates during the postacute window of increased plasticity that occurs over the course of the first 

several weeks after ischemia. Reorganization in such studies spans scales that range from 

transcriptional regulation (Li et al. 2010), to structural changes such as increases in dendritic 

branching  (Withers & Greenough 1989, Jones et al. 1994), to shifts in motor map representation 

(Nishibe et al. 2010). Other studies of post-injury reorganization in animal models have described 

neurite outgrowth (Carmichael et al. 2001, Jones & Schallert 1992), dendritic branching (Brown et al. 

2010, Bury & Jones 2002), increased expression of growth-associated proteins (Kawamata et al. 

1997, Stroemer et al. 1995) and changes in synaptic density (Brown et al. 2008, Jones et al. 1999). 

Studies of cortical injury in the rat typically involve functional outcomes, such as the ability to 

successfully traverse a ladder without slipping (Jones et al. 1999); specific forelimb movements while 

handling pasta (Tennant et al. 2010); or the ratio between successful pellet retrievals and attempted 

reaches while retrieving a pellet from a pedestal outside of the experimental box (Whishaw et al. 

1986, Whishaw & Kolb 1988, Whishaw et al. 1990, Whishaw et al. 1991, Whishaw et al. 1992, 

Whishaw et al. 1993).  However, while these works set the stage for the system identification 

problem, the inability to directly associate mechanisms of plasticity to both movement and its 

generation by the cortical engine has precluded an answer. 

The future of neurorehabilitation research depends upon the ability to relate these things directly. 

This is evident in apparent controversies arising from the desire to interpret different results from 

similar findings in the reaching rat (Alaverdashvili et al. 2008a, Allred et al. 2010, Kirkland et al. 
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2012). Similarly, it is now controversial to even use the terms recovery and restitution when 

describing post-stroke plasticity (Levin et al. 2009, Krakauer et al. 2012, Krakauer & Carmichael 

2017). Fortunately, a more recent approach that involves the relation of movement directly to the 

cortical activity associated with it serves as an example of how this model might be used to describe 

recovery specifically (Ramanathan et al., 2018). Low-frequency oscillations in the local field potential 

(LFP) were observed during pellet retrievals, disappeared after small ischemic injuries, and re-

emerged in rats that regained the ability to perform the behavior. The study focused on quasi-

oscillatory activity and the use of alternating current stimulation based on the importance of phase-

locked spiking, which is suggested to be an important population feature that intrinsically relates to 

the generation of movement by the motor cortex. However, a gap in knowledge persists: which 

circuit components allow such oscillations and the subsequent accurate volitional control of 

movement by the motor cortex? For example, to what extent do related changes at the level of unit 

activity pertain to tuning shifts in output or output-adjacent cells, such as is thought to occur during 

motor learning (e.g. Mitz et al. 1991, Wise et al. 1998, Peters et al. 2017a, Peters et al. 2017b, 

Papale & Hooks 2018)? Do these changes relate specifically to shifting cortical outputs, such as 

occurs in Layer 5b of mice during learning of a lever-pressing task (Masamizu et al. 2014)? 

 

https://docs.google.com/document/d/1M0ZjOH7LkRv7qWsMw0LE2emMuSJqzkEZoi8peDFw9XA/edit#bookmark=kix.cwc3fy2igol6
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Figure 5.1: Experiment setup 

A) Timeline of behavioral endpoints. After surgery, despite unavoidable heterogeneity at the 

level of individual animals, there was a statistically significant group-level difference in the 

main functional outcome: likelihood of successful pellet retrieval. There was also a 

significant group by post-op day interaction: rats eventually showed functional changes that 

allowed them to retrieve pellets successfully at levels that were comparable to pre-surgical 

baselines. 

B) Spatial layout of bilateral cortical recordings and targeted ischemic injury. Recordings 

were made from the rostral forelimb area (RFA; PM homolog) contralateral to the preferred 

reaching limb (“contralateral” or “ipsilesional” hemisphere) and the caudal forelimb area 

(CFA; M1 homolog) ipsilateral to the preferred reaching limb (“ipsilateral” or “contralesional” 

hemisphere). Motor maps were defined using intracortical microstimulation (ICMS) mapping 

to identify the forelimb responsive areas, which were then targeted using stereotaxic methods 

and approximately co-registered on digital maps as shown in insets. Grey circles represent 

injection sites of Endothelin-1 (ET-1), which were only administered to the Ischemia group. 

Example comparisons of coronal sections corresponding to the targeted CFA territory are 

shown on the inset on the right.  Credit for data collection, surgical and animal care, and 

histological analysis described in this chapter goes to Andrea Pack and David Guggenmos; a 

bulk of these data were collected before the author joined the cortical plasticity lab. 

C) Motor-learning null hypothesis. The original null hypothesis was that units in spared 

territory of the ipsilesional hemisphere, such as those in RFA, would demonstrate shifts in 

activation that would more closely align to a particular motor event (shown: Grasp onset). This 

would cause individual unit “tunings” to appear to shift closer to the time of that particular 

event, or cause them to emerge when a given tuning was not initially present (not shown). 

Because the “tunings” would likely be closely associated to the output of the motor area, which 

exhibits descending corticospinal projections as does the injured CFA, this may be more likely 

to occur in “output” units so that changes might resemble tuning shifts observed in areas 

associated with learning. 

D) Network reoptimization alternative hypothesis. The alternative hypothesis is that 

changes are more subtle, which mostly results in no apparent “shift” in tunings to motor 

events. Instead, plasticity is distributed throughout the network, leading to changes that are 

significantly evident in the temporal patterns of population activity (when the neural state is 

considered as a multivariate vector for a single instant in time, as opposed to as a single 

variable corresponding to the rate of a given cell under consideration). These changes would 

manifest subtly, as the network converges upon its new preferred state during a “motor re-

optimization” process. 
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This study describes changes in the motor phenotype of rats retrieving pellets during the first four 

weeks after a focal, vasoconstrictive ischemia targeted to the caudal forelimb area (CFA) 

contralateral to the preferred forelimb (Figure 5.1A,B). Concurrent extracellular recordings collected 

from spared rostral forelimb area (RFA) in the same (ipsilesional) hemisphere and CFA in the 

opposite (contralesional) hemisphere were used to test the hypothesis that units shift their activity in 

a process that resembles motor learning (i.e. Figure 5.1C). While a statistically significant change in 

unit activity by group and area during specific movement phases distinguished units on the basis of 

injury group and area, the small effect size and lack of longitudinal trends differentiating unit spike 

counts when grouped this way indicates instead that such changes might be driven by a smaller 

subset of responsive units that do undergo tuning changes as might be expected during motor 

learning. However, if such a subset represents a relatively small proportion of all units under 

consideration, why does the majority of unit activity appear to be indifferent to the injury? 
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Modeling the bilateral unit population as a recursive system, we tested  for indicators of fixed point 

dynamics (i.e. Figure 5.1D). This led to a surprising finding. Features of the neural population 

dynamics predicted daily behavioral performance even though all regressions used data from only 

stereotyped, successful pellet retrievals. Specifically, the ratio between the amount of variance 

explained by multiple-least-squares (MLS) optimal regression (R2
MLS) of bilateral population features 

onto their first difference and the variance explained by the same regression with a skew-symmetry 

constraint (R2
Skew; Churchland et al. 2012) predicted behavioral performance on a given day even 

when total trial duration was included in the regression model. These results support the 

interpretation that while a small portion of cortical units probably do shift tunings in a manner that 

resembles motor learning, the bulk of changes that differentiate between restitution and recovery are 

distributed among synapses throughout the cerebral cortex in both hemispheres.  
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Results 

Trends in pellet retrieval performance 

Young-adult (3-4 months) male Long-Evans rats were required to successfully retrieve53 at least 

42 of 60 pellets (70%) on three separate days prior to study inclusion (Baseline; Figure 5.1A, 

postoperative days with values less than zero). A binomial generalized linear mixed-effects 

(GLME) model with a logistic link function was used for the number of successfully retrieved 

pellets given the total number of pellets was fit to data from only Baseline sessions using a 

fixed intercept and the fixed effect of Group (Intact or Ischemia) and a random intercept by 

Animal (Table S5.1: Model-1).  There was no statistically significant difference between the two 

levels of Group for pellet retrieval success rate during these criterion sessions (Intact, n = 4; 

Ischemia, n = 6; R2 = 0.14, p = 0.178, t(28) = 1.382; Figure S5.1A), indicating that trends were 

not driven by an initial intrinsic difference in the capacity of individual rats to retrieve pellets.  

A similar binomial GLME model with logistic link function was used to address all pellet retrieval 

sessions. This model added a categorical fixed-effect indicating if retrievals occurred during 

Baseline (Pre-vs-Post) as well as an interaction of this term with Group (Table S5.1: Model-2). 

In general, performance declined across groups after surgery (R2 = 0.50, fixed effect of Pre-vs-

Post: p << 0.001, t(219) = -14.006; Figure 5.1A), although this decline was significantly less in 

the Intact group (fixed effect interaction of Pre-vs-Post[Post] and Group[Intact]: p << 0.001, 

t(219) = 5.63). 

A third binomial GLME model with logistic link function was fit to address trends in performance 

after the surgery (only Pre-vs-Post[Post] sessions were included; Table S5.1: Model-3). 

Because of the characteristic trend of Ischemia rats to show a large decline in performance 

                                                
53 Definitions of successful retrieval are elaborated in the Methods section. Pellet retrievals were scored 

for success using two different sets of criteria. Scoring to determine success rates used for initial inclusion 
and overall trends in behavioral performance (i.e. Models 1-3) allowed up to three reach attempts as long 
as the pellet was not dislodged from the platform before a trial was marked as unsuccessful. 

https://docs.google.com/presentation/d/1PZ90luMF8-0Zv5DuJ1CRsfVYOmghvnvAK-C-cVlf3bI/edit#slide=id.g97deed0701_0_143
https://docs.google.com/presentation/d/1PZ90luMF8-0Zv5DuJ1CRsfVYOmghvnvAK-C-cVlf3bI/edit#slide=id.g901c95540b_13_67
https://docs.google.com/presentation/d/1PZ90luMF8-0Zv5DuJ1CRsfVYOmghvnvAK-C-cVlf3bI/edit#slide=id.g901c95540b_13_10
https://docs.google.com/presentation/d/1PZ90luMF8-0Zv5DuJ1CRsfVYOmghvnvAK-C-cVlf3bI/edit#slide=id.g901c95540b_13_67
https://docs.google.com/presentation/d/1PZ90luMF8-0Zv5DuJ1CRsfVYOmghvnvAK-C-cVlf3bI/edit#slide=id.g97deed0701_0_143
https://docs.google.com/presentation/d/1PZ90luMF8-0Zv5DuJ1CRsfVYOmghvnvAK-C-cVlf3bI/edit#slide=id.g901c95540b_13_67


181 

during the first and second weeks after the injury (e.g. Figure 5.1A), the random effect of 

Animal included not only a random intercept term, but also a coefficient for Day and a cubic 

transformation54 of Day (Day-Cubed). The fixed effects were an intercept term, and each main 

factor as well as the interaction between Group and Day-Cubed. The use of Day-Cubed in the 

fixed effect interaction reflects the motivation to distinguish between the tendency of one group 

to improve behavior by day, which typically occurred in a nonlinear fashion. As expected, the 

Intact rats were significantly better and more consistent across days at retrieving pellets, as 

indicated by a smaller coefficient for the interaction effect of Group and Day-Cubed (R2 = 0.67, p 

= 0.019, t(189) = -2.36). While there were significant differences between the stricter scoring 

required to ensure that only trials with stereotyped movements were used for the subsequent 

neural analyses (Method: R2=0.79, p = 0.003, t(358) = 8.89; Table S5.1: Model-4), Intact and 

Ischemia rats demonstrated comparable recovery trajectories by group and were still 

                                                
54 It should be noted that this precludes the utility of such a model in predicting behavior outside the range 

of days observed in these experiments. Such a use-case was not the intent in this experiment; the 
motivation was simply to fit individual rat trends in performance while addressing longitudinal correlations 
in the data. 
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differentiable on the basis of Group (p = 0.002, t(358) = 10.1; Figure S5.1B). 

 

 

Figure 5.2: Spike count trends during specific phases of 

movement for individual channel activity. 
A) Illustration of motor events and behavioral phases. The phases of the pellet retrieval rat 

behavioral model have been well-described elsewhere. In this study, we focused on key events 

that were required in order to define a trial for consideration in further analyses: Reach Onset, 

Grasp, and Complete. These events relationally defined three phases of the behavior that 

formed epochs over which spikes were counted: Pre, Reach, and Retract.  

B) Aggregate detrended spike count differences during Pre phase. Multi-unit activity was 

counted during stereotyped phases of the reach, grasp, and retrieval behavior. Because no 

“preparatory” cue was used, premotor activity (Pre phase) was estimated as spike counts 

during a fixed 600-ms epoch beginning 1,350-ms prior to the Grasp event based on the 

distribution of reach/advance phase durations. This period was selected with the goal that, on 

average, it was temporally close to the rest of the behavior, far enough temporally to avoid 

overlap with motor phases, and long enough to observe enough spikes that a Poisson model 

could be accurately reconstructed. 

C) Aggregate detrended spike count differences during Reach phase. The two phases, 

reach/advance and retract were defined using three tagged behavioral landmarks that could 

be readily identified during manual video scoring used to refine behavioral synchronizations 

obtained via digital or analog inputs collected from the same acquisition circuit as the 

extracellular field-potential time-series. Reach Onset was defined as the earliest frame in 

https://docs.google.com/presentation/d/1PZ90luMF8-0Zv5DuJ1CRsfVYOmghvnvAK-C-cVlf3bI/edit#slide=id.g8dc4116212_1_0
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which the rat began a forward motion of the forelimb from inside the behavioral box toward 

the pellet platform outside of the box. Grasp was defined as the first frame in which the digits 

began to clearly close around the pellet (a phenomenon that was notably lacking at early time-

points for multiple rats in the Ischemia group). This was often preceded by a spreading of the 

digits that has been described elsewhere as Arpeggio, although the close temporal proximity of 

this behavioral element relative to the camera frame-rate precluded it or other similar more-

granular elements of behavior from further consideration in analyses of neural time-series. The 

reach/advance phase is defined as the times between and including the times corresponding to 

the tagged Reach Onset and Grasp, meaning that there is a temporal jitter on the order of 30-

ms around this epoch due to the camera frame rate. 

D) Aggregate detrended spike count differences during Retract phase. The retract phase 

was bounded by the Grasp and the third tagged behavioral element: Complete, which was the 

first frame in which the rat had fully returned its paw through the opening at the front of the 

box. Because all three tags were required for a reach to be considered in neural analyses, 

(common) trials that ended with a “functional success,” in which the rat flailed multiple times 

prior to grasping the pellet, were excluded from consideration in neural analyses. 
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Trends in pellet retrieval trial duration 

The pellet retrieval behavior was broken into discrete phases that were delimited by three 

behavioral events: Reach Onset, Grasp, and Complete (Figure 5.2A). Each event was 

required for further analytical consideration of a given pellet retrieval trial. These behavioral 

landmarks demarcate three phases of the movement: Pre, Reach, and Retract (Figure 5.2A; 

definitions in Methods section). The phasic delimitation of rat pellet retrieval movements in this 

manner has been suggested by the past work of other groups; in fact, it is likely that the 

behavior could be better-described with the addition of landmarks such as the “arpeggio” that 

occurs when the rat extends each digit just prior to the grasp (Whishaw & Pellis 1990, Whishaw 

et al. 1991). However, in consideration of the camera frame rate, rat group sizes, and the 

decision to intentionally limit the number of retrieval trials (in an attempt to mitigate the effects of 

behavioral rehabilitation), the two longest and most-clearly distinct phases of the movement 

were used in this study.  

In general, the stricter criteria for trial inclusion eliminated trials when a behavioral event was 

missing: applying this restriction retained 4,294 total Successful and Unsuccessful unique 
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pellet retrieval trials for which Reach Onset, Grasp, and Complete events (as well as a pellet: 

in many instances, the rat attempted to retrieve a pellet despite its absence from the platform). 

The majority of these trials were included after application of thresholds determined for total 

duration (1.5-seconds, 98.9% of trials met criterion), Reach phase duration (0.65-seconds, 

96.7% of trials met criterion), or Retract phase duration (0.75-seconds, 95.6% of trials met 

criterion). Of these duration-based exclusions, the majority corresponded to Unsuccessful trials 

in Intact rats (Figure S5.1C).  

The length of phases observed during the behavior were consistent with past studies in the 

reaching rat (Table 5.1; Whishaw & Kolb 1988). A GLME that included fixed-effect terms for an 

intercept term, Group, Day, and a Group by Day interaction, as well as a random effect intercept 

and coefficients for Day grouped by rat was used to fit Trial Duration for all unique trials, 

without considering duration-based exclusions or outcome.  A log link function was used in 

order to improve heteroskedasticity among longer trials (Table S5.1: Model-5, R2 = 0.28). 

ANOVA indicated that none of the fixed-effect terms were statistically significant (Figure 

S5.2A). However, the model was substantially improved after reducing the dataset to 1,632 

unique trials by removing Unsuccessful trials as well as the remaining outliers based on phase 

duration thresholds (Table S5.1: Model-6, R2 = 0.42). The improvement in fit was not due to the 

fixed effect coefficients, with ANOVA indicating that only the fixed-effect intercept was 

statistically significant. Therefore, the improved fit reflected the heterogeneous longitudinal 

changes in Total Duration at the level of individual rats (Figure S5.2B), which most likely 

related qualitatively to the diversity of strategies adopted by the rats after surgical implant, as 

observed during video scoring.  

GLME models for fitting the remaining movement timing metadata (Table S5.1: Models 7-9) 

focused exclusively on the reduced dataset of 1,632 Successful retrievals. In addition to the 

model terms used for regression of Total Duration, each of these models used Total Duration 
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as an additional random effect grouped by rat. Most rats (6 of 10; random effect coefficient for 

Day with p > 0.05) maintained a relatively constant Reach Duration over the course of the 

postacute period (Table S5.1: Model-7, R2=0.46). One rat (RC-18) in the Intact group employed 

a comparatively interesting strategy in which he extended his paw much more slowly and 

deliberately to the point that it qualitatively seemed exploratory rather than a short and 

deliberate movement like the rest (Figure S5.2C random intercept effect grouped by rat 

estimates that this phase on average lasted 180-ms longer for this particular animal compared 

to all others; p = 0.027).  

Retract Duration trends were also more strongly-associated with individual rats, with only the 

Intercept term estimated as a significant fixed effect (Table S5.1: Model-8, R2=0.25). Again, 

changes were heterogeneous, with some rats increasing and some rats decreasing in a manner 

that did not necessarily depend upon cohort (Figure S5.2D). The ratio between the Reach and 

Retract phases tended to remain constant (Figure S5.2E), although rats in the Ischemia group 

trended towards a significantly shorter relative proportion of each trial spend in the Reach 

phase (p = 0.060, t(1,628) = -1.88; Table S5.1: Model-9, R2=0.17). 

Trends in spike counts during phases of movement 

Multi-unit spikes were counted during each phase as a proxy for cortical excitability of cells near 

each recording channel (Table 5.2). Because there was no pre-movement cue in this task, a 

fixed 600-ms epoch (Pre) starting 1,350-ms prior to the Grasp was used to set a baseline 

estimate of premotor activity. Spike counts during the Pre epoch were regressed using a 

binomial GLME with a logistic link function to estimate the fraction of “pre-movement” spikes, 

given the combination of Group and Area (levels: RFA and CFA), and the total number of 

spikes predicted by weekly trends on a per-animal basis (Table S5.1: Model-10, R2=0.38). 

There was a statistically significant effect of the interaction Group by Area (p = 0.001, t(68) = -
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3.37), indicating a significant relative decrease in the likelihood of spikes occurring during this 

period in RFA of Ischemia rats (Figure 5.2B).  

Models to detrend spike counts during Reach and Retract phases additionally contained the 

duration of those phases as a covariate, since unlike the Pre phase (which by definition was a 

fixed epoch), these two phases were demarcated by behavioral events (Figure 5.2A). During 

the Reach phase, values for each group and area combination were similar (Figure 5.2C; 

Table S5.1: Model-11, R2=0.79). Perhaps most-interestingly, when spikes were counted during 

the Retract phase, there was a statistically significant interaction effect (p = 0.009, t(68) = 2.68; 

Table S5.1: Model-12, R2 = 0.86) indicating that the likelihood of spikes in RFA of Ischemia rats 

during this phase was relatively closer to the likelihood of spikes in CFA during the same phase, 

compared to the relative likelihoods of RFA and CFA spikes in Intact rats during the Retract 

phase (log-odds = 1.05; Figure 5.2D). While a model specified in this way suggests that the 

effect size (Cohen’s d) is approximately 0.66, post-hoc comparison by week and area indicates 

that such estimates of effect size range from 0.23 and 1.53 (Table 5.3). When translating to 

estimated total spike counts, these differences ultimately yield expected differences on the order 

of 1 or 2 spikes above or below an average of roughly 20 spikes expected during the Retract 

phase across Area, Group, and Week differences (Figure 5.2D). The same effect was further 

diminished when data were examined on a per-Day as opposed to per-Week basis (Figure 

S5.3). It is unclear whether such changes reflect salient changes in a subset of responsive 

units; whether they reflect differences in Retract phase duration (Figure S5.2D); or if the 

relatively linear falloff in expected spike counts over time (Figure 5.2D, top panel) reflects other 

non-specific processes related to the general loss in sensitivity and ability to detect units, such 

as probably happens during gliosis (Chestek et al. 2007). Classification of Support forelimb 

movements (Figure 5.2A, red box) as belonging to a particular phase of the behavior suggests 

that the timing of movements in the non-reaching forelimb is better accounted for on a per-
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Animal basis, as opposed to by Day and especially Group, which was the least-predictive 

feature in a trained ensemble classifier model (Figure S5.5A). 

Prediction of trial outcomes using spike counts during phases of movement 

The previous results suggest that if reoptimization occurs at the level of the cortical microcircuit, 

then it probably only occurs in a small subset of units whose changes are washed out when 

activity is averaged as a population. Qualitative observations of such changes agree with the 

model findings: there are clear longitudinal trends in spike rate surrounding the Grasp at the 

level of multi-unit activity on individual microwire array channels, beyond what would be 

expected due to loss of signal sensitivity due to apparent electrode impedance increases (e.g. 

Figure S5.4F, a channel in animal RC-05 that was associated to the lateral microwire array in 

distal forelimb ICMS motor territory in RFA shows a shift in timing of peak excitation). If the 

movement-coherent changes in these units contributes to functional reoptimization that 

correlates directly with changes in the motor phenotype, then the changed activity of such units 

should provide predictive power in classifying single trial outcomes55. Alternatively, changes, 

such as those observed by Ramanathan and colleagues, might be explained more simply by 

direct changes in motor phenotype, such as an increase in movement speed (Ramanathan et 

al. 2018). 

                                                
55 This is predicated upon the traditional model assumption that successful pellet retrievals are a useful 
covariate of motor reorganization such as occurs after focal cortical ischemia. 
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Figure 5.3: Using spike counts during specific phases of 
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movement to predict individual trial outcomes. 
A) Predicting trial outcomes using individual channel activity is typically inaccurate. This 

joint-distribution shows two of the predictors: the number of spikes counted during the Reach 

phase and the number of spikes counted during the Retract phase. While the likelihood of a 

successful trial has a much sharper peak in the joint conditional posterior distribution estimated 

by the naive Bayes classifier ensemble, the distribution for likelihood of an unsuccessful trial 

overlaps considerably with it.  

B) Example with better posterior joint distribution separation. This joint-distribution 

shows two of the predictors: the number of spikes counted during the “Pre-Grasp” phase and 

the number of spikes counted during the Retract phase. Because there are multiple predictors, 

the probability manifold is difficult to visualize in one image without dimensionality reduction 

or multiple joint conditional plots such as this one and the one shown in Panel A. In this case, 

the distribution peaks show slightly better separation, suggesting a stronger substrate for a 

decision-surface threshold in predicting successful or unsuccessful trials.  

C) Ensemble prediction confusion metrics using only phase-specific spike counts. Phase-

specific activity in Intact rats is sensitive to, but not specific for trial outcome success. 

Predictions are therefore most-influenced by the prior on overall success rate, as indicated by 

the relative false positive rate (FPR) between Intact and Ischemia rats. 

D) Ensemble prediction confusion metrics using phase-specific spike counts 

supplemented with total trial duration and reach phase duration. Including a covariate for 

movement speed improves the specificity of Intact rat single-trial outcome predictions and 

lowers the FPR.  

 

 

To test this, two classification models were estimated (Table S5.1: Models 13-14). Each model 

consisted of an ensemble of naive Bayesian classifiers estimated individually for each unique 

combination of micro-wire channel and postoperative Week. Both predicted individual trial 

Outcome (Successful or Unsuccessful) by recovering the joint posterior probability for each 

category given the spike counts during the Pre, Reach, and Retract phases (e.g. Figure 

5.3A,B show cases with poor and moderate separability, respectively). The extended model 

additionally used the Total Duration and Reach Phase Duration of the trial to predict the 

categorical Unsuccessful or Successful outcome. General trends in classifier accuracy tended 

to relate most strongly to the average weekly performance by group rather than qualities of 

individual channels (Figure 5.3C). Inclusion of Duration variables as a covariate improved 

performance, but did not substantially differentiate predictive power on the basis of channel 

https://docs.google.com/presentation/d/1PZ90luMF8-0Zv5DuJ1CRsfVYOmghvnvAK-C-cVlf3bI/edit#slide=id.g901c95540b_13_67
https://docs.google.com/presentation/d/1PZ90luMF8-0Zv5DuJ1CRsfVYOmghvnvAK-C-cVlf3bI/edit#slide=id.g9970e1125a_0_17
https://docs.google.com/presentation/d/1PZ90luMF8-0Zv5DuJ1CRsfVYOmghvnvAK-C-cVlf3bI/edit#slide=id.g9970e1125a_0_17
https://docs.google.com/presentation/d/1PZ90luMF8-0Zv5DuJ1CRsfVYOmghvnvAK-C-cVlf3bI/edit#slide=id.g9970e1125a_0_17
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differences by area (Figure 5.3D). In general, this strategy likely suffers from heterogeneity of 

the neural response during Unsuccessful pellet retrievals; therefore, during the population 

analyses, only Successful trials were considered. Similarly, applying principal components 

analysis (PCA) at the level of individual units to uncover longitudinal trends on the basis of spike 

counts during the Reach or Retract phases (Figure S5.6A,B) did not show a meaningful 

differentiation of units on the basis of Area or Group (Figure S5.6C,D). 

Neural population dynamics 

The largest portion of variance in the motor cortex neural state during pellet retrievals should relate 

to the largest portion of variance in the limb state. Movement implies the existence of a dynamical 

system describing the physics of the position of the limb. Therefore, an initial assumption was that 

dynamics in the neural population state that mirror some predictive model of the limb state were to 

be expected. Furthermore, if plasticity occurs diffusely throughout the network, then qualitative 

changes in neural population dynamics should be detected in the combined patterns of activity from 

units, even if they are not output or output-adjacent and therefore do not demonstrate clear changes 

in tuning (Michaels et al. 2016).  Previous studies have suggested that system dynamics can be well-

approximated using a first-order linearized system to fit the main population-level features of the 

neural population (Churchland et al. 2012). We decomposed the neural state of Successful pellet 

retrievals using multi-unit spike rates from individual microwire channels from epochs that spanned a 

fixed period from 660-ms prior to 330-ms after alignment relative to Reach or Grasp events. After 

subtracting the average expected spike rates on a per-channel basis using PCA. The top-12 

principal components were retained and their scores were used as the neural state variable on a per-

recording basis. Because a fundamental prerequisite in describing such dynamics is the criterion that 

the modeled system does in fact represent the observed data (Lebedev et al. 2019), we 

characterized the amount of the original rates that were explained by the retained principal 

components. For a 32-channel array, if each channel contributed independent white Gaussian noise, 

https://docs.google.com/presentation/d/1PZ90luMF8-0Zv5DuJ1CRsfVYOmghvnvAK-C-cVlf3bI/edit#slide=id.g9970e1125a_0_105
https://docs.google.com/presentation/d/1PZ90luMF8-0Zv5DuJ1CRsfVYOmghvnvAK-C-cVlf3bI/edit#slide=id.g901c95540b_5_51
https://docs.google.com/presentation/d/1PZ90luMF8-0Zv5DuJ1CRsfVYOmghvnvAK-C-cVlf3bI/edit#slide=id.g901c95540b_10_37
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then the top-12 components would be expected to explain 37.5% of the data. In only a few cases 

observed did the top-12 components explain less than 80% of the data (Figure S5.7A), indicating 

that the neural state variable did not over-reduce the population data.  

Following the procedures of (Churchland et al. 2012), the first difference of the neural state variable 

was fit by MLS regression of the neural state to recover the linear transformation matrix MMLS or 

MSkew, which were used to compute the associated values of R2
MLS and R2

Skew. To test the initial 

assumption--that dynamics in the neural state were present in a ubiquitous manner--we fit R2
MLS 

using a GLME with fixed terms of intercept and the ordinal dummy variable of Week, as well as a 

random effect of Day and Day-Cubed grouped by Animal (Table S5.1: Model-15; R2 = 0.66). While 

there was not a significant fixed effect for Week (p = 0.403, F(4, 111) = 1.014), linearized first-order 

dynamics were not always present as was evident from the longitudinal trends by Animal (4 of 6 rats 

had a significant random effect coefficient related to Day; Figure 5.4A). This was not due to the loss 

of units as might result due to electrode degradation: on the contrary, dynamics were typically not 

evident until the end of the second week, with the exception of one Intact rat in which dynamics 

were present as early as the first week and one Ischemia rat that did not show strong evidence of 

dynamics in general (Figure 5.4A). Due to the constraints on both number of channels and also total 

trial counts, these trends were only available in two rats from the Intact group (one of which only had 

values from the first two weeks) and four rats from the Ischemia group. Therefore, a random effects 

GLME model was fit to predict behavioral Performance using a fixed effect intercept and the factorial 

interaction of Group and Day, while specifying intercept, Duration, and R2
MLS terms grouped by 

Animal for the random effects (Table S5.1: Model-16; R2 = 0.96). Each of the four Ischemia rats 

demonstrated a significant random effect of R2
MLS. Puzzlingly, in the three Ischemia rats for which 

R2
MLS increased over time, there was a negative association of R2

MLS with behavioral performance. 

https://docs.google.com/presentation/d/1PZ90luMF8-0Zv5DuJ1CRsfVYOmghvnvAK-C-cVlf3bI/edit#slide=id.g9102c83240_1_111
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Figure 5.4: Population dynamics and motor performance. 
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A) Adjusted R2
MLS by animal for first-order population dynamics as a function of 

postoperative day. If correlators of functional outcomes at the level of individual channel 

multi-unit were modest or better-explained by simple features of movement, such as the total 

overall duration of the pellet retrieval, then perhaps averaging single-channel trial activity 

across trials obscures neural signals related to the most-salient computations related to 

behavioral reorganization. While the lack of strong longitudinal trends by group that relate to 

aggregate unit activity at the level of individual channels is surprising, it is possible that very 

different mechanisms from motor learning are invoked. Using principal components analysis 

to define “neural state” variables comprised of scalar combinations of the spike rate estimate 

for each channel concurrently, we observed that a simple multiple-least-squares regression of 

the top-12 principal components onto their first difference yielded the most-striking trends in 

the neural data that were striking with respect to postoperative day. With the exception of RC-

08 (Ischemia), rats tended to increase the ability to fit linearized dynamics as a function of 

postoperative day. The relative low percent of the data explained for RC-08 using the top-12 

principal components suggests that the effect in this animal may simply be driven due by the 

loss of behaviorally-related signals. 

B) Fixed points during Reach and example. This example is a stable spiral: such a 

population vector could form in relation to a steady-state calculation related to moving to a 

specific point in space, as may be necessary during reaching. 

C) Fixed points during Grasp and example. This example is a saddle point. The bifurcation 

formed by points on either side of the dashed red line could relate to processes such as 

successfully or unsuccessfully realizing that the pellet has been contacted, which may lead to 

diverging state transitions with respect to the neural state space. 

D) Partial Dependence of Performance on R2
MLS & R2

Skew. As R2
Skew becomes an accurate 

approximation to the data, then the better that the population trends are fit by imposing 

constraints that impose rotatory fixed-point dynamics on the first-order planar dynamics, 

predicted outcomes improve (orange arrow). Because R2
skew must be less-than or equal-to 

R2
MLS, by definition, the impossible response region in the partial-dependence contour is 

removed. In this model, likelihood of pellet retrieval success on a given day (a proportion from 

0 to 1) was scaled between -1 and 1 using a scaling of the hyperbolic arctangent transformation 

so that “majority-success” values were closer to 1 and “majority-failure” values were closer to 

-1. Note that for any value of R2
MLS, as R2

skew decreases, the predicted performance is worse 

(interaction effect is statistically significant; F = 4.99, DF = 100, p = 0.028).  

 

This finding was unexpected: if neural dynamics were present, and only data from successful trials 

was used to estimate the neural dynamics, then why would a stronger indicator of a first-order 

dynamical system correlate with poorer behavioral outcomes? If such a dynamical system is 

intrinsically related to the generation of movement by the cerebral cortex, then the opposite is 

expected. There are some caveats about this statement: first, the assumption that first-order 

linearized dynamics provide a useful approximation to the nonlinear neural activity around the motor 
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behavior may not hold. While such an assumption is worth examining in its own right, because it is 

beyond the scope of the present study, we focused on a second possibility: not only the presence of 

first-order dynamics, but the specific kind of fixed point indicated by the dynamical system is a 

qualitatively important indicator of behavioral outcomes that relate to accurate generation of 

movement. For example, a non-isolated fixed point that forms a plane of fixed points with rotatory 

structure has been suggested previously as an intrinsic feature of motor cortical activity (Churchland 

et al. 2012).  

In these data, during alignment to the Reach, when considering the primary plane formed by the two 

basis vectors recovered during the MLS regression which captured the largest percent of the 

variance in neural state, fixed point analysis seldom indicated the presence of stable spirals and 

never stable centers. Trajectories with rotatory structure were often only able to reconstruct the 

observed system poorly (Figure 5.4B). By comparison, a substantial portion of the fixed point 

dynamics during both the Reach and during the Grasp indicated the presence of a saddle point 

(Figure 5.4C). A random effects GLME was fit using only a fixed effect intercept term and two 

random effects groupings: an intercept term, as well as the factorial interactions of Classification and 

R2
MLS, grouped by Alignment (Reach or Grasp), and a second random effect of intercept and Day 

grouped by Animal (Table S5.1: Model-17; R2 = 0.82). Interestingly, the random effects model 

indicated that when a stable node was present during the Reach, there was a positive correlation 

between system reconstruction accuracy and the performance on a given day (Table 5.4; p = 0.009, 

t(98) = 2.65). Similarly, when a saddle point was detected during the Grasp, there was a positive 

correlation between system reconstruction accuracy and the performance on a given day (Table 5.4; 

p = 0.005, t(98) = 2.89). These results suggest the significance of different fixed points at distinct 

phases of the behavior, which may relate to the expected dynamics during a behavior: for example, 

as the forelimb moves toward a pellet of consistent size and shape that always resides at the same 

https://docs.google.com/presentation/d/1PZ90luMF8-0Zv5DuJ1CRsfVYOmghvnvAK-C-cVlf3bI/edit#slide=id.g9970e1125a_2_4
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location, then a transient and stable fixed point in the neural state may reflect the learned 

expectation about these properties which relate to the movement of the limb.  

The lack of fixed points with rotatory structure suggests that the MLS  linearization probably contains 

some amount of inaccuracy due to the selected timescale, which may not always reflect a stationary 

system with a single fixed point, as well as due to the general noise that is expected from stochastic 

point processes (spikes), which act as noisy signalers of the underlying system dynamics. Therefore, 

fixed point analysis of only the MLS regression transformation may not capture the full picture. In 

order to compare our results with others, we estimated a final GLME to fit the Performance response 

surface associated with the factorial fixed effect interactions of R2
MLS, R2

Skew, Group, and Explained56 

as well as random effect intercept, Day, and Duration terms grouped by Animal (Table S5.1: Model-

18; R2 = 0.85), since R2
Skew may be a more robust descriptor of the presence of rotatory structure in 

the data compared to categorization of least-squares optimal fixed points.  Interestingly, for 

Ischemia rats, there is a negative correlation between the interaction of R2
MLS and R2

Skew (p = 0.028, 

t(100) = -2.23), but a positive correlation for R2
Skew (p = 0.055, t(100) = 1.94). When R2

Skew is large, it 

indicates that the cortical dynamics are capable of forming a stable fixed point manifold, which 

relates to the evolution of the neural system state through time. While these data can only provide a 

sparse characterization of system states, the performance response surface that relates R2
MLS and 

R2
Skew suggests that during the accurate generation of movement by the cerebral cortex, the non-

isolated fixed point must exhibit rotatory structure to indicate that the neural controller generates 

optimal movements (Figure 5.4D).  

                                                
56 The total amount of the original spike rate data explained by the included principal components. 
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Discussion 

In this study, we examined neural unit and population signals from bilateral motor cortex in a rat 

model of ischemic stroke during a skillful forelimb movement sequence. A subset of units drove 

small but significant trends in spike rate that distinguished between Intact and Ischemia groups on 

the basis of motor cortical area. These units demonstrated changes in tuning, as evidenced by the 

timing of a clear peak in average excitation with respect to behavioral events, suggesting that motor-

learning-like phenomena may account for changes observed during the reoptimization of movement 

such as occurs after stroke in a relatively small number of cells. However, it is unclear whether such 

changes reflect an abstract factor related to the functional execution of the task; if they relate to the 

recruitment of different muscles and/or nervous subsystems during compensatory task restitution; or 

if they simply reflect changes in overall movement speed as indicated by clear reductions in total 

time required to execute the pellet retrieval behavior.  

By contrast, neural population signals were not expected to change substantially due to the 

constraints imposed by movement sequence similarities required to successfully perform the pellet 

retrieval behavior. Instead, the bilateral motor cortices typically did not exhibit signs of a dynamical 

system until the second week after the surgery. Furthermore, when a dynamical system did provide 

an adequate approximation of the neural population signals, the primary fixed point recovered in 

different animals and in alignment to different landmarks of the behavior was not consistent. This 

suggests that a diversity of population-level strategies emerge during network plasticity after injury, 

as might be expected intuitively. Interestingly, in sessions where a least-squares dynamical system 

reconstruction was reasonable, the accuracy of reconstructing the system dynamics with an imposed 

rotatory structure was positively correlated with the overall pellet retrieval success rate. This 

suggests that while shifted motor tunings of individual cells likely does play a role in reorganization 

after injury, it is plasticity that occurs throughout the bilateral cortical networks which allows the 

neural population to “explore” a vast response surface and ultimately converge upon strategy 
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enabling the generation of movement. When this process converges upon a strategy that causes the 

first-order system dynamics of the bilateral neural population signal to exhibit rotatory structure, it 

indicates successful reoptimization, which is sometimes called recovery.  

Because there are many ways in which such a reoptimization could result in a system capable of 

generating a movement sequence resulting in the adequate completion of a motor goal, the optimal 

network state or capacity to converge to such a state is often not attained while plastic processes are 

most-active. Similarly, it does not require a large leap to imagine how network-level plasticity could 

serve as a basis for rehabilitation effects observed during behavioral therapies such as constraint-

induced movement therapy (CIMT). The set of movements capable of generating the desired 

functional outcome is constrained (Wolf et al. 1989, Wolf et al. 2006, Wolf et al. 2010), which 

regularizes the network reoptimization and biasing it so that it is more capable of generating the 

relevant motor output in an efficient manner. When considered in this light: that the reoptimization 

reflects a stochastic process that can be biased toward a particular local minimum which becomes 

locked-in as the typical time-course of molecular cascades that are incurred after injury unfold, the 

apparent “paradox” that suggesting that it is surprising that small secondary injuries led to improved 

recovery can be understood as a second-chance, jump-starting reoptimization that had converged to 

a suboptimal state (Zeiler et al. 2016). 

It should be noted that regardless of the constraints imposed on movements, reoptimization that 

results in the ability to execute any arbitrary task-specific motor function may result in the apparent 

change in tunings of cortical spiking to specific facets of the motor output in a way that arises from 

the nonlinear and probably non-monotonic relation between neural activity and motor output (Griffin 

& Strick 2015). This confound can be addressed in animal models through the collection of a suitable 

control covariate to aid interpretation, such as electromyographic recordings from the muscles of 

interest (Evarts 1968, Griffin & Strick 2020). Alternatively, causal evaluation of the system response 

to experimental changes, such as by perturbing cortical inputs using optogenetic manipulations 
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(Sauerbrei et al. 2020), might be used to ensure the utility of tunings taken from individual cells 

during behavior. 

What does the relation of motor performance to the presence of rotatory structure in population 

activity tell us about rehabilitation? This requires a brief explanation of the neuroanatomical and 

neurophysiological reasons why rotatory dynamical structure, at least in the cerebral cortex during 

motor behavior, is interesting to begin with. First, both movement generation and suppression 

require activity due to the manner in which the nervous system encodes and decodes information 

(Stinear et al. 2009). Descending corticospinal cells not only synapse upon motoneuron pools that 

excite muscle fibers, but they also synapse onto interneurons capable of exerting an inhibitory 

influence on motoneuron output (Griffin & Strick 2020). Activity within the nervous system must 

perpetuate itself to continue to exist through time; the manner in which it perpetuates dictates 

function and likely reflects the intrinsic organizational arrangement of a given cortical area or even 

layer (Granger et al. 1989). For motor cortical cells to encode a target such as a pellet, this means 

that the relevant network structural elements must allow activity related to the pellet to propagate 

indefinitely while allowing for the trajectory’s disruption at any instant as the system updates its own 

state (i.e. switches to a new target or goal).  An efficient strategy would be to organize population 

activity so that only two components are required in order to perpetuate a target in the form of a fixed 

point. This places the population activity into a transient “orbit,” until subtle alterations (such as 

contact or predicted contact with the pellet) perturb it from this target fixed point. Importantly, the 

manner in which this activity perpetuates itself is predicated upon the arrangement of 

neuroanatomical connections of the system motor outputs: the system must maintain balanced 

excitation and inhibition during “hold” periods, which would require a minimum of two independent 

components that could sum in order for the net output to balance to zero (Kaufman et al. 2014). 

Furthermore, this putative strategy is grounded in an empirical observation from neurophysiological 

recordings that has been observed by many groups: transient but salient multi-peaked excitations in 



202 

individual unit activity when synchronized with specific motor events (i.e. Figure S5.4; Churchland et 

al. 2012, Musall et al. 2019). 

It would be unlikely that each unit demonstrating such tuning reflects a direct corticospinal motor 

neuron-related cortical output. The cortical engine probably isn’t involved directly in controlling 

movement of the limb along the majority of the trajectory between the Reach and Grasp. Instead, it 

would be more efficient if the cortex kicked in at key times during the compound sequence of 

movements required for the digits to arrive at the stationary pellet. Selecting the appropriate onset 

times may involve supplementary motor areas of cortex (Tanji & Shima 1994), but in general 

probably requires the involvement of the basal ganglia and related subcortical circuits in order to 

ensure that efficient output combinations are selected while manipulating limb trajectory (DeLong et 

al. 1983). This offloads most of the work to some combination of the momentum and mechanical 

properties of the limb along with small online error corrections allowing maintenance of the trajectory 

and which occur via subcortical mechanisms (Shadmehr & Mussa-Ivaldi 1994, Tseng et al. 2007). 

An abundance of past research indicates that, particularly in the case of a learned skillful movement, 

this is probably the case (Rothwell et al. 1980, Shadmehr et al. 2010). Correlated activity in the 

cerebral cortex may reflect spatial attention related to visual information and its integration into the 

behavior (Lebedev & Wise, 2001), which allows the sparse corticospinal cells with motoneuron-

related output projections to impose acceleration on the limb at the right moment to move the 

effector as desired. This suggests a secondary importance of ongoing cortical activity: prediction and 

representation of an internal coordinate transformation on the state of the limb, enabling the ability to 

adjust and integrate visual information during motor task execution (Georgopoulos et al. 1986, 

Georgopoulos et al. 1989). Indeed, sensorimotor cortical interactions may enable motor adaptation, 

such as occurs on the slower timescale of multiple trials (Mathis et al. 2017) rather than adaptation 

that occurs within single trials (Albert et al. 2020). 

https://docs.google.com/presentation/d/1PZ90luMF8-0Zv5DuJ1CRsfVYOmghvnvAK-C-cVlf3bI/edit#slide=id.g9970e1125a_0_99
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What does it mean if the system converges to fixed point dynamics that do not exhibit rotatory 

structure; specifically, why would this correlate with suboptimal functional outcomes? In general, this 

is not intuitively problematic, which is part of what makes the finding interesting. Could such a 

phenomenon relate to higher-order modulators of cortical activity that are known to change after 

injury (Mohajereni et al. 2011, Kokinovic & Medini 2018)? It is tempting to speculate that synaptic 

changes in terminals of the de novo sprouting axonal processes that emerge after ischemia 

(Dancause et al. 2005, Dancause 2006) may be involved, particularly given the correspondence 

between the timing of the system dynamics emerging and the expected timescale of weeks required 

for sprouting processes to connect with horizontal cortical targets. Future experiments, wherein 

simultaneous measurements from motor and sensory cortex would enable the reformulation of this 

speculation as a system identification problem. Does the sparse distribution of corticomotoneuronal 

cells mean that in some cases the damaged tissue disproportionately affects the “wrong” cells, the 

basis for rescaling network weightings loses full rank, and the network state can never recover? Or, 

does suboptimal convergence relate to instability that arises from sensory feedback during 

refinement of the cortical limb state representation, suggesting therapies targeting the specific role of 

cortical sensorimotor interactions during adaptive motor control contain hope for the future of 

behavioral interventions after stroke? 
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Methods 

Animals used in study 
Ten young-adult, male Long-Evans rats (weight = 312 – 353 grams, Harlan Laboratories57, Inc., 

Indianapolis, IN) were acquired at three months of age. Rats were singly housed and provided 

with food and water. The room was kept on a 12-h:12-h light/dark cycle, and ambient 

temperature was maintained at 22 °C. Protocols for animal use were approved by the Kansas 

University Medical Center Institutional Animal Care and Use Committee and complied with the 

Guide for the Care and Use of Laboratory Animals (Eighth Edition, The National Academies 

Press, 2011). Rats (n = 10) were assigned randomly to either the Intact group (n = 4) or 

Ischemia group (n = 6). 

Use of the rodent model 

Although upper extremity tasks still often use monkeys, due to the typically terminal endpoints 

required in neuroanatomical or molecular experiments, rodent models played an essential role in 

evaluating cortical reorganization after injury:  the rat neocortex contains both an M1 forelimb 

homologue (caudal forelimb area; CFA) and a second motor area in M2 that may function 

analogously to PM or SMA (rostral forelimb area; RFA). The rat motor cortex consists of two defined 

areas related to volitional motor control of the forelimb.  The caudal forelimb area (CFA) is akin to 

primary motor cortex (M1) and has motor representations as shown via intracortical microstimulation 

(ICMS) (Donoghue & Wise 1982, Neafsey & Sievert 1982, Neafsey et al. 1986). The rostral forelimb 

area (RFA) functions somewhat analogously to the pre-motor (PM) and supplementary motor areas 

(SMA) of primates. RFA and CFA have similar, though not identical, efferent projections to 

subcortical regions such as the caudate, putamen, subthalamic nucleus, substantia nigra, red 

nucleus, pontine nuclei, and inferior olive and spinal cord (Rouiller et al. 1993). Even though rats lack 

                                                
57 There may be breeder-specific differences in learning rate and performance plateaus that reflect 
intrinsic differences in colony genetic distributions (O’Bryant et al. 2011). 
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fine individual digit control, they can execute complex forelimb movements such as a skilled reaching 

task (Whishaw & Coles 1996). After cortical injury, rats demonstrate deficits during the pellet retrieval 

task (Whishaw et al. 1993). 

Behavioral training 
Rats were trained on a reach-to-grasp pellet retrieval task for up to four weeks before surgery. 

Each rat was placed within a 30-cm x 30-cm x 53-cm Plexiglas box with a 1-cm-wide slot 

allowing access to a tray where food pellets were placed. Forelimb preference was determined 

at the beginning of the skilled reach task training. The task, which has been detailed extensively 

by multiple groups,  requires the rat to reach through the slot, grasp a food pellet (45 mg; Bio-

Serv. Flemington, NJ) from a fixed target location 2-cm away, and lift the food pellet to the 

mouth. Initially, the rats are trained using a retrieval slot in the middle of the box, with pellets 

placed at closer targets that are accessible by either the left or the right forelimb. The preferred 

forelimb was determined as the first forelimb that is used in an attempt to retrieve the pellet. 

Once forelimb preference was determined, rats were then trained using an opening on the side 

of the box from which it would only be possible to retrieve pellets using the preferred forelimb. 

Trials were recorded with a digital video camera (29.97 frames per second) for playback and 

analysis (Supplementary Videos S1, S2). Rats were required to obtain at least a 70% 

successful reach rate (60 trials per day) for three consecutive days (baseline behavior) before 

inclusion into the study. Throughout the duration of the study, food intake was monitored on a 

scheduled feeding regimen to encourage performance on the skilled reach task. 

Scoring pellet retrievals 
Two separate procedures were used for scoring pellet retrievals as successful or unsuccessful. 

The first method reflects the standard scoring procedure used in previous studies in reaching 

rats (Nishibe et al. 2010). It allows the rat to attempt to retrieve the pellet up to three times 

before a failure was marked. If the pellet was dislodged from the platform prior to the three 

https://docs.google.com/presentation/d/1PZ90luMF8-0Zv5DuJ1CRsfVYOmghvnvAK-C-cVlf3bI/edit#slide=id.g5367e90b2f_0_26
https://docs.google.com/presentation/d/1PZ90luMF8-0Zv5DuJ1CRsfVYOmghvnvAK-C-cVlf3bI/edit#slide=id.g5367e90b2f_0_32
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attempts, then it was automatically counted as a failure. This method is more forgiving toward 

rats that seem to be able to reach correctly out of the box but are either impatient or very slightly 

miss the pellet target. The second scoring procedure was more stringent: any movement of the 

forelimb out of the box and toward the pellet was counted as a failed retrieval attempt if the rat 

did not successfully bring the pellet back into the box. This did not apply to trials in which the rat 

attempted to retrieve the pellet, but no pellet was present on the pedestal. 

Surgical procedures 
Each rat was anesthetized initially with isoflurane (to effect) followed by ketamine (80-100 

mg/kg, intraperitoneal (IP)) and xylazine (5-10 mg/kg, intramuscular (IM)). Anesthesia was 

maintained throughout the procedure with repeated bolus injections of ketamine (10-15 mg/kg/ 

IM) as needed. After the rat was secured in the stereotaxic frame, bupivacaine (0.5-1.0 mL) was 

delivered subcutaneously (SC) to the scalp/incision area and penicillin (0.15 mL; G benzathine 

and G procaine, 300 K/mL) was delivered SC under the skin of the back. A rectal probe 

attached to a homeothermic blanket (Harvard Apparatus, Holliston, MA) was used to maintain 

core body temperature at approximately 36.7⁰C throughout the experiment. A craniectomy was 

made based on stereotaxic coordinates relative to bregma over the PM contralateral to the 

reaching forelimb (anterior-posterior (AP) +3.5 mm, medial-lateral (ML) +2.5 mm) and the M1 

ipsilateral to the reaching forelimb (AP +0.5 mm, ML + 3.5 mm). To control brain edema after 

the craniectomy, the muscles of the neck overlying the cisterna magna were reflected and a 

small puncture was made in the spinal dura (foramen magnum) to allow for CSF drainage. Six 

holes (three on either side of the skull midline) were drilled caudal to the M1 craniectomies for 

placement of stainless steel screws used during the procedure to ground the electrodes and 

anchor them to the skull with dental acrylic. The dura was then removed over the exposed PM 

and M1. ICMS was used to identify the forelimb motor representations (Figure 1B). Following 

completion of the surgical procedure, the incision was closed with sterile 4.0 silk surgical suture 
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and treated topically with EMLA cream, and triple antibiotic ointment. The rat was removed from 

the stereotaxic device and the temperature probe removed and placed within the homeothermic 

blanket, upon which the animal was monitored for anesthetic recovery. Each rat received an 

additional injection of penicillin 0.15 mL SC (G benzathine and G procaine 45,000 IU), and then 

was moved to a recovery area until the rat was able to maintain an upright posture and 

locomote freely. Once stabilized, the rat was returned to its home cage. Post-surgery analgesics 

were given to the rat during the 72 hours after surgery [four SC injections of Buprenorphine 

(0.05-0.10 mg/kg every 12 hours; four doses of Acetaminophen (20-40 mg/kg, oral) every 12 

hours]. 

ICMS motor mapping 
Intracortical microstimulation (ICMS) procedures were used to identify the caudal and rostral 

forelimb areas (CFA and RFA). A digital image of the cortical surface was acquired and overlaid 

with a 250 µm grid in order to co-register insertion sites with their corresponding cortical target. 

Responses at the grid intersections (avoiding surface vasculature) were noted and used to 

inform microelectrode array placement. Pulse trains synchronized with an audio monitor were 

delivered at 1-Hz, and each train consisted of bursts of 13 bi-phasic pulses at a pulse frequency 

of 300-Hz and phase duration of 100-ms. During data analysis, responses were grouped 

categorically by the following scheme: "Distal Forelimb" (DF), which included wrist extension or 

flexion, or digit movements; "Proximal Forelimb" (PF), which included elbow flexion; "Distal-

Proximal" (DF-PF), which was assigned when an interpolated electrode site was likely to be 

between a Distal or Proximal site; "No Response" (NR), when threshold stimulation (up to 80 

µA) did not elicit any movement; or "Other" (O), when a trunk, shoulder, neck, mouth, face, or 

vibrissae response was elicited (Figure 5.1B, inset examples). 

https://docs.google.com/presentation/d/1PZ90luMF8-0Zv5DuJ1CRsfVYOmghvnvAK-C-cVlf3bI/edit#slide=id.g97deed0701_0_0
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Ischemia model 
After identification of CFA and RFA, rats assigned to the Ischemia group had six 0.7-mm 

diameter holes drilled over the CFA contralateral to the reaching forelimb. Relative to bregma 

and using a stereotaxic coordinate system in which anterior and lateral directions are positive, 

injection sites were distributed in two rows mediolaterally (+2.5-mm and +3.5-mm), along three 

anteroposterior locations (+1.5-mm, +0.5-mm, and -0.5-mm). A focal, ischemic infarct targeting 

CFA cortical territory was induced with the vasoconstrictor endothelin-1 (ET-1; 0.3 µg ET-1 

dissolved in 1 µl sterile saline (~120 pmol)). Each hole was injected with 0.33 µL of ET-1 

through a glass micropipette (160 µm o.d.) attached to a Hamilton syringe with the tip inserted 

to a depth of 1.5-mm below the cortical surface. Injections were made at a rate of 4-nl/sec by a 

programmable motorized micro-injector (Hamilton Company, Reno, NV). The injection pipette 

remained in place for an additional 5 minutes after injection to minimize backflow of ET-1 during 

pipette removal from the cortex. 

Electrode implants 
Following ICMS and ET-1 lesion procedures, skull screws (Pan Head Phillips head machine 

Screws, 0-80 thread, 1/8’’ length, stainless steel, McMaster-Carr, Elmhurst, IL) were placed in 

the six screw holes to ground the electrodes and to act as an anchor for dental acrylic applied to 

the skull. Two 16-channel microwire arrays (Tucker-Davis Technologies; 16 shank, 2x8 

electrode, 50 µm wire diameter, 45° tip angle, 250 µm electrode spacing, 500 µm row spacing) 

were implanted in the RFA contralateral to the reaching forelimb (i.e., ipsilesional RFA) and CFA 

ipsilateral to the reaching forelimb (i.e., contralesional CFA). Online recording of activity from the 

microelectrode arrays was used to determine a depth with high neuronal firing on the majority of 

channels as the array was lowered into place with a mechanical micro-drive (at a depth ~1,550 

µm perpendicular to the cortical surface). A quick-curing polymer was used (Kwik-Cast, WPI, 

Sarasota, FL) to cover the cortex, fix the arrays in place, and seal the cranial opening. Dental 

acrylic was then used to add additional anchoring to the skull by adhering to the stainless steel 
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screws placed in the skull. The acrylic also served as a protective barrier over the sealing 

polymer. 

Data acquisition 
Each rat was tethered to the implanted arrays through a motorized commutator (TDT) that 

allowed free movement within the testing chamber. Neuronal activity was recorded using TDT 

hardware and a custom TDT OpenEx system circuit with a biquadratic bandpass filter designed 

to approximate cutoff frequencies of 300 and 5,000 Hz and a sampling rate of 25 kHz. The 

circuit was synchronized with an analog stream denoting the intact state of an infrared beam on 

the opposite side of the slot from the rat, which allowed the co-registration of pellet retrieval 

video trials with the neurophysiological data by providing landmarks in the data streams that 

could be correlated with video frames in which the rat broke the plane of the beam.  A boolean 

stream denoting user-operated button presses corresponding to successful pellet retrievals was 

used to facilitate offline video scoring, and also served as a secondary verification that video 

and neurophysiological records were aligned correctly.  Following the lesion and array implants, 

each rat was tested on the reach task on post-operative days 3-28 for a maximum of 20 

minutes. On days where the rat was unmotivated to attempt pellet retrievals, the protocol was 

extended to allow the chance to observe pellet retrievals, since all analyses were predicated on 

the rat performing the behavior; in some cases, it was not possible to obtain a sufficient number 

of pellet retrieval observations to include the recording for further analysis. 

Histological characterization of injury 
Rats were perfused transcardially with normal saline followed by 3% paraformaldehyde. Brains 

were post-fixed in a 30% glycerol solution. Coronal sections were cut at 50 µm and stained with 

cresyl violet. Sections were mounted to slides, dehydrated, and cover slipped. Gliosis at the site 

of microwire arrays caused adherence of the tissue to the wire array during recovery of the 

perfused brain in some cases; therefore, a formal lesion volume analysis was not conducted. An 
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exemplar of coronal hemisections that correspond to CFA from an animal in each group is 

shown in Figure 5.1B. 

Data Processing 
All custom Matlab scripts used in data processing is freely and publicly available (initial filtering 

and spike detection used version R2017a: https://github.com/m053m716/CPLtools; video 

scoring and neural data analyses specific to this manuscript used version R2020b: 

https://github.com/m053m716/rc-proj).  

Video alignment and behavioral metadata tagging 

Detailed instructions for the specific video analysis procedure are available online 

(https://github.com/m053m716/rc-proj/tree/master/videoAnalyses#video-alignment). Briefly, 

videos were aligned using a procedure requiring the visual co-registration of the approximate 

timing of paw crossings with the analog signal obtained from an infrared beam break placed in 

front of the box opening. In some cases, a second pellet sensor was available that helped 

synchronize the videos. To verify that data were accurately synchronized, a trained network 

using DeepLabCut (Mathis et al. 2017), a method for markerless kinematic tracking that is 

specific to animal models of behavior (Nath et al. 2019), was trained and used to obtain time-

series for the presence of the reaching forelimb. This time-series was then cross-correlated with 

the analog beam break signal so that the two could be aligned on average as accurately as 

possible, giving the best possible alignment. four behavioral events were defined: Reach 

Onset, Support, Grasp, and Complete. These events were associated with individual video 

frames in order to provide markers in the neural data for coherent alignment in subsequent 

analyses. 

Processing applied to neural data 

Only bandpass filtered data were saved (cascaded bi-quadratic bandpass filter 300 to 5,000 Hz; 

TDT); therefore, no analysis of the LFP was conducted beyond analyses focused on multi-unit 

https://docs.google.com/presentation/d/1PZ90luMF8-0Zv5DuJ1CRsfVYOmghvnvAK-C-cVlf3bI/edit#slide=id.g97deed0701_0_0
https://github.com/m053m716/CPLtools
https://github.com/m053m716/rc-proj
https://github.com/m053m716/rc-proj/tree/master/videoAnalyses#video-alignment
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activity. A virtual common re-reference was applied to the filtered data, subtracting the mean 

signal of each microwire array from the individual channels on the respective probe. Threshold-

crossings, as opposed to classified neural units, were used during spike detection in order to 

avoid bias and because they still contain information about behaviorally-relevant activity 

(Chestek et al. 2011). Previous work by our group indicates that multi-unit threshold crossings 

are stable indicators of neural activity during pellet retrievals over the timescale on which these 

recordings were conducted (Bundy et al. 2019). 

Recovery of neural population dynamics 

Only successful trials were used during population analyses; a mask was applied to remove any 

channels that were not present across each included recording for each rat. Spike rates were 

obtained using a 60-ms sliding window. A square-root transformation was applied to any spike 

rates (not spike counts) to reduce heteroskedasticity that occurs at higher values. Rates used in 

population analyses were z-scored on a per-channel basis using an epoch spanning 2,000-ms 

to 1,000-ms prior to each trial. The cross-trial average event-aligned spike rate was recovered 

for each channel and subtracted from the individual trial spike rate estimates in order to only 

consider the population variance (Churchland et al. 2011). To recover the population neural 

state, rates from all trials were concatenated and principal components analysis (Matlab `pca` 

function) was used to recover the principal component scores for the top-12 components. 

Multiple least-squares (MLS) regression was applied to obtain both the least-squares optimal 

and skew-symmetric transformation matrices onto the first time-difference of the neural state 

vector (the principal component scores) as described elsewhere (Churchland et al. 2012). 

Statistical models 

Generalized linear mixed-effects models (GLME) were estimated using the Matlab `fitglme` 

function (version R2020b) using restricted maximum pseudo-likelihood. Naive Bayesian 

classifier ensembles were estimated using the Matlab `fitcnb` function. Relevant model 
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parameters are described in the pertinent Results sections; the models used in all analyses are 

summarized in Table S5.1.   

https://docs.google.com/presentation/d/1PZ90luMF8-0Zv5DuJ1CRsfVYOmghvnvAK-C-cVlf3bI/edit#slide=id.g901c95540b_13_67
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Figure S5.1: Supplementary characterization of pellet 

retrieval motor behavior. 
A) There were no clear differences in baseline performance success rate by group. Rats 

included in the Ischemia cohort (n = 6) and Intact cohort (n = 4) demonstrated comparable 

levels of pellet retrieval proficiency prior to surgery. Rats were required to successfully 

retrieve 70% or more pellets over the course of 60 attempts, and maintain that accuracy for at 

least three baseline sessions prior to surgical implant. This process typically required training 

for 4-5 weeks, at which point rats were 3-4 months of age, meaning they were at a 

developmental stage intermediate to young and adult as defined elsewhere. 

B) Performance by day using only trials included for neural analyses. While there was a 

statistically significant difference between behavioral scores when the rules for excluding trials 

to be used in neural analyses were enforced, the same general trends of deficit and recovery for 

the Ischemia group and overall better behavioral performance for the Intact group indicate 

that the exclusions did not alter the relation between neural dataset and overall daily 

performance substantially. 

C) Distribution of movement phase durations and thresholds for inclusion or exclusion. 

One of the major phenotypic differences between groups manifested in the total duration of the 

pellet retrieval, which was reduced as a function of post-op day for rats in the Ischemia group. 

To identify salient changes in cortical movement control related to the injury, efforts were 

made to only compare phenotypically comparable elements of behavior. Therefore exclusion 

criteria (dotted lines) were used on the total (top-left), reach advance phase (bottom-left), and 

retract phase (bottom-right) of the reach. It was also noted that during successful retrievals, the 

reach/advance phase was relatively longer and tended to last longer than the retract phase. 
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Figure S5.2: Characterizing timing parameters. 

A) Total pellet retrieval duration (for all trials). In general, there was a trend in most 

animals toward an overall reduction in total reach duration, although two rats in the Ischemia 

group showed a tendency toward an increase in total reach duration as did a rat in the Intact 

group. 

B) Total pellet retrieval duration (for only trials included in neural analyses). When only 

considering trials that were used in neural analyses, the trends seen in panel S5.2A are 

essentially magnified. 

C) Reach phase duration is reduced in a subset of Ischemia rats that exhibit recovery. As 

in panel S5.2B, when only considering trials that were used in neural analyses and only 

measuring the duration of the Reach phase, the trends seen in panel S5.2A are essentially 

magnified. 

D) Retract phase duration is extended in a subset of Ischemia rats. Interestingly, trends 

during the Retract phase are different. Most of the Intact rats maintain a relatively constant 

duration of this phase, while only the Ischemia rats that did not decrease the duration of the 

Reach phase exhibit increases during this phase. Notably, RC-08, who exhibited a significant 

difference between behavioral performance using the standard scoring method (Fig. 5.1A) and 

behavioral performance using the rigorous criteria for inclusion in neural analyses (Fig. 

S5.1B), displayed decreases in both phases of the behavior. Incidentally, this same rat is the 

only rat that exhibited a clear decline in signatures of neural population dynamics during the 

course of experimental recordings (Fig. 5.4A). 

This suggests that during apparent recovery, some of the Ischemia rats adopt one or more 

different compensatory strategies (as has been reported in past work by other groups). These 

strategies result in an apparent overall improvement in functional outcome when scored by 
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traditional methods, but when the movements are broken down carefully it is seen that the 

apparent improvements may actually be the result of a different movement strategy altogether. 

In this case, rats with an increased duration of the Retract phase.  

E) The relative proportion of the reach spent in each phase remains deceptively similar 

when considered as a fraction of the total reach duration. This alternative way of looking at 

the reach duration strategy suggests another reason why standard scoring methods do not 

capture the trends observed when the reach is even broken up as crudely as by two phase 

components. As shown, the relative proportion spent in one part of the behavior or the other 

does not appear to change significantly, which may cause a typical scoring of the behavior to 

miss the otherwise striking trends in phase duration.  

Why might this be important? Returning to the increased Retract phase durations discussed in 

Panel S5.2D, the causes the behavior to take longer during the Retract phase, which means 

that it may involve a slower closing of the digits about the pellet, or a more careful scraping of 

the pellet into the paw in order to ensure its collection. If sensory feedback from cutaneous 

contact with the pellet is involved in any way with the successful execution of this behavior, 

then this differentiation suggests that a subset of rats either cannot integrate this sensory 

feedback, or integrate it via a pathway that takes longer to compute; identification of such a 

thing is beyond the scope of this study.  
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Figure S5.3: Mean spike counts by Day, Phase. 

A) There is no significant interaction effect for detrended spike counts during the Pre 

phase of pellet retrievals. By day, the Intact group tends to have more spikes during this 

phase than the Ischemia group regardless of the level of Area (bottom inset). It should be 

noted that these relatively minor differences do correlate with differentiation observed in the 

total reach duration (top inset). 

B) There is a significant interaction effect of Ischemia and RFA levels for detrended spike 

counts during the Reach phase grouped by day. However, when grouping is performed at 

the per-day level, the effect size is even smaller than when groupings are made at the weekly 

level. It is more-likely that the Matlab GLME function for estimating significance in this 

instance overestimates the number of degrees of freedom, resulting in a spuriously significant 

estimate. The correlation between the apparent increase of spike counts in Intact-CFA 

between postoperative days 16 to 19 (bottom inset) directly correlates with fluctuation in the 

estimated Reach phase duration for those same days (top inset). 

C) There is a significant interaction effect of Ischemia and RFA levels for detrended spike 

counts during the Retract phase by day. Again, the correspondence to Retract phase duration 

should be noted, particularly for spikes in the daily trend line for Intact rats.  

Individual data points and per-animal trends (black) are shown in Figure S5.3D and S5.3E. 
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Figure S5.4: Mean spike rate by channel. 

A) Mean channel normalized activation, from -1.5 to +0.5 with respect to successful 

grasp, averaged across all days and channels within an area. Bands represent +/- 1 

standard error of the mean (SEM). B) and C) contain the same groupings for successful and 

unsuccessful Grasp trials respectively but channel rates are expressed as heat maps, where 

warmer colors represent a higher normalized activity level. Shifted RFA activations in 

Ischemia rats overall are a little closer to zero. Remaining panels are trends by rats, with earlier 

days shown in greener hues. The first 6 panels are Ischemia rats and the last 4 are Intact rats. 

Panels are ordered by RC-identifier number from smallest to largest, within each group. 



229 

 



230 

 



231 

 

 



232 

 

 

 



233 

 

 



234 

 

Figure S5.5: Support forelimb movements do not bias data 

A) Movement of the support forelimb is not systematically associated with a particular 

phase of the behavior. One possible confounder, particularly since half of all channels were 

from microwires in CFA contralateral to the support forelimb, is that timing of movements in 
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the supporting forelimb were systematically biased in injured rats, such that observations 

(particularly in contralesional CFA) are more likely a reflection of output related to that limb 

than the reaching limb of interest. Support was tagged as the first frame in which movement of 

the supporting forelimb was observed. We found that this movement was ubiquitous across 

both groups (the “No Support” category never occurred across trials included for neural time-

series analysis). Timing of the movement appeared to be related more idiosyncratically to 

individual rats than to group. A support vector machine model was trained to classify the 

Support movement as occurring during the reach/advance phase, synchronous with the Grasp, 

or during the retract phase. The most-accurate model (70.1%, top-left) supports this 

conclusion, with AnimalID weighted as the most important classifier variable (bottom-left). 
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Figure S5.6: PCA Scores for trends in channel-phase 

association by postoperative day by phase. 
A) Channel trends in peak activation by postoperative day for spike counts during the 

Reach phase. Principal components analysis (PCA) breaks down the trends in spike counts 

associated with a particular phase (here: Reach) for each given channel over the course of all 

recordings. Some channels showed their peak spike counts during this period only in the latter 

sessions; if this type of trend were associated to units more frequently conditionally upon 

whether such channels were more frequently present in a particular area or experimental group, 

then this might also be an indicator of where plasticity is most-likely to occur.  

B) Channel trends in peak activation by postoperative day for spike counts during the 

Retract phase. Principal components analysis (PCA) breaks down the trends in spike counts 

associated with a particular phase (here: Retract) for each given channel over the course of all 

recordings. Some channels showed their peak spike counts during this period only in the latter 

sessions; if this type of trend were associated to units more frequently conditionally upon 

whether such channels were more frequently present in a particular area or experimental group, 

then this might also be an indicator of where plasticity is most-likely to occur.  

C) Distribution “Early,” “Mid,” and “Late” component groupings by Area and 

experimental Group during the Reach phase. Cluster analysis reveals that there is no 

systematic trend in coefficient for a particular trend in longitudinal peak excitability, as 

demonstrated by spike counts during this phase of the movement, for any combination of Area 

and Group. 

D) Distribution “Early,” “Mid,” and “Late” component groupings by Area and 

experimental Group during the Retract phase. Cluster analysis reveals that there is no 

systematic trend in coefficient for a particular trend in longitudinal peak excitability, as 

demonstrated by spike counts during this phase of the movement, for any combination of Area 

and Group. 
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Figure S5.7: Do population features capture the data? 

A) Adjusted R2
MLS and percent of data explained. Excellently, there appears to be a pretty 

strong relationship between the amount of data that is explained by the top-12 principal 

components. Note that if 12 principal components do not capture most of the data, then it is 

strongly suspected that much of the data is noise. 

B) Joint distributions of all planes percent data explained, when projection matrix is 

broken into pairs of vectors forming subspace planes (such as are used during fixed point 

analysis). There are many instances when the plane of interest capture a relatively large 

portion of the data and are still an accurate representation of the original data (right; dots 

represent grasp-aligned analyses, crosses represent reach-aligned analyses). 
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Figure S5.8: Supplementary information for 

population dynamics models. 
A) Performance distribution (response variable in GLME) for statistical models. A priori, 

we know that this covariate is definitely “non-normal” (at least from the presently-observed 

data). Therefore, we should also look to see if there are “clusters” where the predicted output 

can be aggregated in a similar fashion. For example, if the predicted output is normally 

distributed, or only has two clusters, these suggest some nonlinearity between the performance 

covariate and the predicted output. Note that the Success Rate used here corresponds to trends 

shown in Figure 5.1A that represent the “Standard” scoring method. The distribution may be 

approximately tri-modal:  

1. At the lower extreme (-1 is the lower bound on tanh output given input bounded by [-

0.5, 0.5]), there are a bunch of days for different animals where they got no or very few 

pellets.  

2. In the middle (slightly below “0” Performance score), there are days where there is 

average behavior. 

3. At the upper end of the distribution, there is another cluster of days where the score is 

really good and hardly any pellets were reached. 

B) Trends in rotatory dynamical structure by day. The animal with the largest increases in 

all categories is RC-04 (Ischemia); the animals with increases in behavioral performance as a 

function of time are RC-02 (Ischemia), RC-04 (Ischemia) and RC-30 (Ischemia). While RC-02 

is not shown here due to losing too many trials in the exclusion process, RC-04 increases in 

accuracy of linearized system for the best-fit system precede increases in linearized system 

accuracy for the rotatory-constrained system. While increases for both kinds of systems are 

comparable for RC-04, the increases for RC-30 are substantially larger in the best-fit system 

by comparison to the rotatory-constrained system. 

C) Adjusted R2
skew by animal. While the data were rarely reconstructed as accurately as when 

the regression recovered the least-squares optimal regression of the linearized dynamics, 

regression constrained to impose skew-symmetry on the recovered regression matrix (i.e. 

jPCA) tended to fit the data with similar temporal trends as when the MLS regression was 

used. One interesting case on a per-animal basis is RC-04 (Ischemia; red squares). This rat 

had a fairly large difference between R2
skew and R2

MLS, and also evidence of a discrepancy 

between functional improvement and motor improvement. Namely, there was a discrepancy in 

scoring when comparing results for this rat (particularly in the first and second weeks) between 

standard scoring on this behavioral task and the scoring required for inclusion in analyses. 

During the same longitudinal epoch, RC-04 tended to score higher using the functional rating, 

but was apparently worse at the task when rigid behavioral rejection criteria were applied. 

Eventually, the rat adopted a pellet retrieval strategy that allowed both scoring scales to 

indicate its proficiency was comparable to pre-surgical retrieval levels; however, the strategy 

typically required multiple “flail” attempts, with the first rapid, short attempts inevitably 

missing the pellet. In general, the principal components explain most of the data, which 

indicate that analysis using the top-12 PCs to decompose the data is okay. Panel D contains 

identical information, but scales the size of markers by percent of overall data that is explained 

by population components. 
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Tables 

 
 

Table 5.1: Descriptive statistics for included phase durations. 

Each table row contains the total trial duration, as well as individual phase durations, for the 

phases of movement (Reach, Retract, or Total Duration) that describe the pellet retrieval 

behavior. 
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Table 5.2: Descriptive statistics for weekly spike data (by 

group). 
Table shows mean spike counts, plus or minus one standard error of the mean, for different 

groupings by area, group, and postoperative week, during the different phases of the motor 

behavior. 

 

 
 

Table 5.3: Effect size for weekly spike data by area and week. 
Weekly effect size estimates are given using Cohen’s D for comparisons between the 

Ischemia and Intact groups by area and postoperative week. Values range from week effect 

sizes to very strong effect sizes, when estimated in this way. 
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Table 5.4: Fixed point classification Random Effects 
Table of statistically significant random effects for fixed point classification model that 

predicts behavioral performance. 
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Supplementary Table S5.1  
Summary of Statistical Models  
Summary of statistical models used in estimating different responses related to the pellet 

retrieval task and cortical dynamics. This table lists models by name as they are described in 

order in Chapter 5. A brief summary of the model’s purpose, along with the distribution and 

link function (if the model was obtained using the Matlab `fitglme` function) are provided. All 

GLME fits made use of the restricted maximum pseudo-likelihood (REMPL) fit method. The 

final column defines the statistical model terms in Wilkinson notation; the key point about this 

notation is that a term defined as “A*B” includes both the individual main fixed-effects of A 

and B, as well as their interaction. Terms grouped using parenthesis are random effect 

coefficients that are grouped by the variable listed after the “|” operator.  
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CHAPTER 6 

Cortical sensorimotor engagement in movement 

Introduction 

The results discussed in Chapter 5 suggest that if recovery after stroke is possible, then 

intervention must be targeted in such a way that facilitates cortico-cortical sensorimotor 

interactions. This suggestion is primarily observational and attempts to account for key 

neuroanatomical (sprouting; Dancause et al. 2005, Dancause et al. 2006) and behavioral 

(increased sensory error rate; Nudo et al. 2000) made by our group in the past. This chapter will 

briefly describe other areas where reorganization could occur, arguing that such cases 

represent the suboptimal convergence of nervous system reorganization during post-stroke 

plasticity. A modified version of the pellet retrieval task as previously described is presented 

along with example data obtained from a behaving rat using this setup. Task data from a small 

cohort of rats is not presented in its entirety, but could be a rich source of information for future 

experiments or research proposals.  

The example dataset is used to make concrete points illustrating the value of the technical 

model schema as they are presented. A critical contribution is simply to explain which 

parametric elements of such model schema act as “sliders,” corresponding to 

neurorehabilitation research designs that study interventions targeted to specific mechanisms of 

the nervous system in control of movement. Thinking about such problems in this way clarifies 

unknown parametric components that could introduce complications in experimental design 

later, or challenges that might introduce nonsignificant noise sources during the collection of 

experimental data in practice.  

https://docs.google.com/document/d/1ZZo0ebKVl2ai57Qz1i2HBdUHZGR0Yx1jBZFkD2sRXwU/edit#bookmark=kix.8u3ous9j7b6k
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Any discussion of theoretical models is supplemented using examples from findings in either the 

behaving rat or from a second dataset collected in the acute rat preparation. In these latter 

experiments, anesthetized rats were subjected to a peripheral sensory mechanical solenoid 

stimulus while measuring field potentials in both motor and sensory cortex. Findings from the 

acute rat are currently in preparation to be submitted to Frontiers in Human Neuroscience for a 

special issue about the utility of brain stimulation mapping (Hayley et al. 2020); the full 

manuscript and total findings do not apply to this Chapter and therefore are not included in their 

entirety.  
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Background 

The debate about recovery and restitution after stroke 

The late 1980s and 1990s were an exciting time in the field of neurorehabilitation research. 

Beginning in the 1980s, strategies for physical therapy emerged suggesting more efficacious 

behavioral interventions that could augment existing techniques that made use of a combination 

of the Reflex and Hierarchical theories of movement (Bobath & Bobath 1984, Wolf et al. 1989). 

As understanding of the nervous control of movement evolved, the approach to physical therapy 

was modified to include the active suppression of abnormal movement sequences while 

simultaneously providing somatosensory or proprioceptive stimuli to the patient (Brock et al. 

2002). Motor mapping experiments in monkeys with subtotal focal ischemia in the hand 

representation of motor cortex provided evidence for an association between functional 

reorganization of motor representation in the cerebral cortex and behavioral recovery of hand 

function (Nudo et al. 1996), suggesting that volitional use of the paretic limb during the 

postacute window may shape reorganization in nearby cortical territory.  

With the notion that behavioral interventions could be associated with functional reorganization 

of nervous tissue, research during the subsequent decades sought to uncover specific 

mechanisms linking these things. The rat model helped to uncover molecular and transcriptional 

mechanisms that occur serially during the postacute window (Carmichael 2006, Carmichael et 

al. 2012). At the same time, research in rat models of injury showed that the rats became more 

proficient in performing behavioral tasks with the forelimb ipsilateral to the injury (Bury & Jones 

2002, Linslee et al. 2004), and that overuse during the postacute period was associated with 

worse functional outcomes (Kozlowski et al. 1996, Bland et al. 2001). This transitioned to the 

study of the relative roles of the intact and paretic limbs in the rat injury model, particularly 

during pellet retrievals; findings suggested that the use of the non-paretic limb during this time 

could incur deficits on the use of the paretic limb (Allred et al. 2005, Allred & Jones 2008, Allred 
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et al. 2010). Instead, if rats performed a skilled motor behavior that involved the paretic limb, 

their pellet retrieval skill was improved, but only if the motor behavior required some element of 

dexterity (Maldonado et al. 2008). These results were supported by the findings that motor 

training using the impaired forelimb was associated with a reduction in forelimb representation 

in the uninjured hemisphere (Barbay et al. 2013) and that inactivating the contralesional 

hemisphere improved recovery after cortical injury (Mansoori et al. 2014). At the same time, 

other groups who had studied the reaching rat model for decades urged caution in interpreting 

such results due to the many possible feature-specific peculiarities of the reaching behavior that 

could relate to the observed changes (Whishaw 2000, Whishaw et al. 2008). Instead, they 

suggested that changes observed in the rat model and associated with molecular, cellular, or 

neuroanatomical correlates of plasticity after stroke might actually relate to compensatory 

mechanisms or could even indicate deleterious plasticity (Alaverdashvili & Whishaw 2008a, 

Alaverdashvili et al. 2008b, Alaverdashvili & Whishaw 2010).  

These disagreements stem from a deeper issue: it was and remains extraordinarily difficult to 

determine the causal relationship between plasticity mechanisms and functional recovery when 

both the putative mechanism and the outcome are emergent processes of many underlying 

factors. Such arguments will continue to plague the rat (and likely any animal) model until 

specific features of movement are clearly related to filtering in the nervous tissue where 

plasticity occurs. Furthermore, as soon as an experimentally-specific indicator of reorganized 

dynamics is detected in relation to movement, the longitudinal experiment must be immediately 

terminated so that histological and molecular techniques might isolate underlying mechanisms 

at the time of emergence in such a filter feature. Of course, it is one thing to suggest these 

things: in practice, such an endeavor would be tremendously difficult and would probably 

require an inter-institutional collaborative effort in order to properly address personnel and 

budgetary constraints. At a technical level, the ability to detect such dynamics and relate them 
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to movement on the same timeline as the experiment is simply something that does not exist 

anywhere in the world (although it could) as of the time of this writing. Therefore, the following 

perspective and methodological illustrations are provided so that this effort, which will be 

required inevitably, might start sooner rather than later. 

Simplified movement control perspective: nervous control as a black box 

A more comprehensive review of motor control perspectives is introduced in Chapter 3. This 

Chapter assumes the Systems perspective when it comes to movement. The idea of treating 

the nervous system like a black box while observing movements is not new (Todorov & Jordan 

2002, Stergio & Decker 2011). Neither is the idea that it is possible to study internal subsystems 

responsible for such dynamics by making specific experimental perturbations to the subject in 

the context of the motor behavior (Shadmehr & Mussa-Ivaldi 1994, Churchland et al. 2006). In 

general, these studies make use of some linear or nonlinear metric that serves as a heuristic to 

qualitatively describe some feature of the system that is to be approximated. For example, the 

apparently random movement of markers tracking the movement of the knees or waist can be 

broken down into regimes that indicate whether movements indicate the presence of underlying 

mechanisms suggestive of a specific type of pathology (Huisinga et al. 2018). 

Most such studies do not have access to recording elements from the “black box” of the nervous 

system directly. While this chapter will not discuss perturbing the reaching dynamics of the rat 

(e.g. the behavior shown in Videos 6.1, 6.2, and 6.3), it aims to provide models at differing 

levels of complexity with concrete parametric suggestions. 

Neural substrates for movement reoptimization after injury 

Cortical activity in humans 

Observations that motor learning effects on simple finger-tapping tasks could be observed using 

fMRI to co-register shifts in activation occurring over the course of 3 weeks upon learning a 

https://docs.google.com/presentation/d/15szE6J_P_AQO7G_Fgp1l1VkBPBjfCG5W_r1JVT5vfeA/edit#slide=id.g9a41039748_0_14
https://docs.google.com/presentation/d/15szE6J_P_AQO7G_Fgp1l1VkBPBjfCG5W_r1JVT5vfeA/edit#slide=id.g9a41039748_1_2
https://docs.google.com/presentation/d/15szE6J_P_AQO7G_Fgp1l1VkBPBjfCG5W_r1JVT5vfeA/edit#slide=id.g9a41039748_0_20
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trained sequence in a finger-opposition task (Karni et al. 1998, Ungerleider et al. 2002) 

suggested a possible assay for motor-related imaging of stroke survivors. This conclusion was 

supported by a clinical study that used both fMRI and transcranial magnetic stimulation (TMS) to 

test “laterality” of response time inhibition with respect to TMS pulses aimed at motor targets in 

each hemisphere and at different latencies relative to a finger tapping response task (Johansen-

Berg et al. 2002). The study found that dorsal premotor cortex (PMd) of the intact hemisphere 

may be more-involved when deficits in stroke survivors were more severe, possibly subserving 

a compensatory role. Similarly, a prospective study of stroke survivors grouped by injured or 

intact premotor cortex (12 patients with intact PM, and 19 patients with injured PM territory) 

found that mobility outcomes were worse in the group with injured PM territory (Miyai et al. 

1999). Cramer and colleagues found that reduced fMRI activations in the injured hemisphere 

may actually relate with improved functional outcomes, although it is noted that the signal could 

be confounded by biasing factors ubiquitous in T2*-weighted images, such as might occur 

during gliosis which likely occurs at the site of injury in stroke survivors (Cramer et al. 2006). 

This type of rearrangement of responsibility for motor output may occur broadly and involve 

subcortical areas: a longitudinal fMRI study of stroke survivors found that task-related 

activations across many areas of the brain decreased as a function of session in stroke 

survivors, but not in intact controls (Ward et al. 2003). 

 

Cortical activity in the rat model 

Improvements in noninvasive imaging and stimulation techniques allowed more studies in the 

early 2000s to measure neurophysiological correlates of cortical reorganization. In rats, 

functional magnetic resonance imaging (fMRI) found that there was an initial increase in activity 

in the contralesional hemisphere (Dijkhuizen et al. 2001), and that by the second week 
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hemispheric imbalance is more normalized although inhibition of responses in the injured 

sensorimotor cortex persists (Dijkhuizen et al. 2003). In combination with the rat behavioral 

experiments previously described, this seems to suggest a maladaptive role of inhibition in the 

injured hemisphere that arises from the uninjured. More recently, activity measured directly from 

the rat perilesional cortex after photothrombotic ischemia has been shown to demonstrate 

quasi-oscillatory, low-frequency oscillations in the local field potential (LFP), which seem to 

cause phasic spiking entrainment coherently around the behavior, and which are associated 

with improvements in the ability of the rat in pellet retrievals (Ramanathan et al. 2018). This 

suggests that activity in the rat cerebral cortex is probably related, at least in some cases, to 

recovery after ischemic stroke. 

More recently, there have been substantial improvements in the understanding of motor cortical 

activity in intact rats that should be considered when interpreting results obtained in injured rats. 

In mice, it was found that on the basis of layer (layer ⅔ vs. layer 5b), the response to learning a 

lever task was quite different, presumably reflecting differences in the shifting tunings of outputs, 

but not “horizontal” connections within the network (Masamizu et al. 2014). Calcium imaging in 

mice performing the same lever task indicates that a large number of neurons become active 

even when no movements are apparently being performed; furthermore, as the task is learned, 

dissimilar movements led to more decorrelated activity and demonstrated heterogeneous 

associations even with the same movement, suggesting their reduced involvement in the 

movement as learning progressed over the course of two weeks (Peters et al. 2017a, Peters et 

al. 2017b). This again leads to the idea that cortex takes an active role in movements 

particularly when movements are new or challenging, but as they become more practiced, their 

representation becomes fixed elsewhere (Papale & Hooks 2018). This makes sense: learning in 

the motor cortex must be different from plasticity processes such as those occurring during 

development; as individuals grow and change they must learn to use new and environment-
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specific patterns of behavior, which would be impossible if every representation learned by 

cortex needed to remain static. 

Known rat nervous system contributors during pellet retrievals 

Movements made by the rat during pellet retrieval have long been known to associate with 

apparent tunings of unit spiking from extracellular recordings in both motor cortex contralateral 

to the reaching forelimb, as well as in the caudate nucleus (Dolbakyan et al. 1977). Both the 

rostral (RFA) and caudal (CFA) forelimb areas also contain units that demonstrate coherent 

increases in spiking activity when aligned to particular phases of the behavior, such as crossing 

the plane separating the inside of the box from its outside (Hyland 1998). The red nucleus, 

which has more influence on the fine movements of the digits in rats specifically, also shows 

evidence of coherent activity during pellet retrievals in the rat (Hermer-Vazquez et al. 2004).   
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Figure 6.1: Complex Box for rodent behavior and 

3D kinematics reconstruction 
A) Complex box used for rodent behavior, with key components indicated. Example 

complex box that was used to train rats in both the Bilateral Pellet Retrieval task as well as the 

standard reaching task involved with the solenoid procedure described in this chapter. Boxes 

indicate notable components involved during practical operation of the boxes. The black box is 

the custom pellet dispenser assembly, which is displayed in greater detail in Figure S6.1. The 

red box indicates attachment points for possible placement locations of fixed cameras for use 

in calibrated video recordings. An additional attachment point anchored to the ceiling above 

the box is not shown. The right inset shows a rendering of the “nose-poke” hole that was added 

to boxes to provide a possible point of premotor alignment. Credit for assistance with box 

assembly: David Bundy & David Guggenmos 
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Figure 6.1 (continued) 

B) Example of stereo-calibration for marker 3D-reconstruction. By mounting a 

checkerboard pattern adhered to a piece of cardboard so that it stays reasonably flat, it is 

possible to perform a stereo calibration on pairs of cameras that both have the checkerboard 

pattern in view as long as the angle between the cameras is not too steep. The checkerboard 

pictured here contains squares that were measured using calipers after printing and determined 

to be 2.79-mm on each side; using this information, the world points corresponding to the 

space that the checkerboard passes through can be triangulated by the detected points from 

each camera that correspond to one another. The known spacing between points is used to 

calculate the camera intrinsic matrix, which accounts for things like the lens distortion etc. 

C) Smoothed, 3D-reconstructed trajectories. Cross-trial medians for individual marker 

coordinates, relative to trial onset. Dimensions are technically a combination of axes, but 

qualitatively a list of the primary components corresponding to each dimension is given below. 

X-Dimension represents the “Right (negative) - Left (positive)” axis with respect to the 

aperture on the box. (Note that with respect to cameras facing the box, this becomes “Right 

(positive) - Left (negative)”). The distal marker on the first digit initially is the furthest-left, as 

we would expect given that it is a right-reach and digit-1 was the “index” finger digit. As the 

pellet is grasped and supination occurs, this digit moves to the “outside” and becomes the 

furthest-right. 

Y-Dimension represents the “Down (positive) - Up (negative)” dimension. The initial trajectory 

is “forward” out of the box, as the tracker struggles to identify the paw prior to its appearance 

above the bottom transverse plane of the aperture. The delay and then “rise” represents the 

movement of the pellet towards the mouth. 

Z-Dimension represents the “In (negative) - Out (positive)” dimension. Notice that the two 

most-distal markers have the furthest excursion from the box. 

 

 

Results 
Using an automated training box (Figure 6.1A), it was possible to train rats to perform a variety 

of tasks that isolate purposeful components of the cortical response during motor behavior, such 

as hemispheric specificity during a mirrored version of a lateralized behavior (Video 6.2A,B), or 

premotor activity in preparation for a motor task involving a decision (Video 6.5).   

Dynamics of Limb Position 
While the reach-to-grasp may seem like a fairly mundane behavior with respect to the difficult, 

complex movements such as those of a professional athlete, which may come to mind when 

“skillful movement” is mentioned, even this relatively simple behavior is a compound movement 

https://docs.google.com/presentation/d/15szE6J_P_AQO7G_Fgp1l1VkBPBjfCG5W_r1JVT5vfeA/edit#slide=id.g9a41039748_0_43
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that comprises several sub-movements that must be coordinated seamlessly in order to 

accomplish the functional goal of grasping the pellet (Whishaw et al. 1991, Whishaw & Coles 

1996). Furthermore, even the basic sub-movements of this behavior form an effectively 

complicated dynamical system that at a high-level relates control signals from motor neurons in 

the spinal cord to the muscles that exert contractile forces on the agonist and antagonist 
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Figure 6.2: Forelimb state-space control model. 

A) State-space model with output as limb position (discrete-time-domain). A schematic for 

a standard state-space model to describe the limb position as a function of sample [n]. The 

model indicates that while the motor neuron commands occur continuously (t) in the time-

domain, we really only realize the limb measurements in the discrete sampled domain which is 

why there’s a change of output argument to indicate this discretization. This model represents 

the very “front” of the dynamical system formed by the reaching limb.  

B) Alternative formulation for limb position. If we consider the integration and 

transformation C as part of a time-varying system transfer function (hmove[n]), then the limb 

position would be described as the convolution of this transfer function with the rate of change 

of the limb state, which includes not only the limb position, but the rate of change of the 

position and possibly the rate of change of that rate of change (acceleration), depending on 

formulation. If we transform the output time-series to its discrete frequency domain 

representation using the Z-transform, then based on the convolution-multiplication duality we 

can see that the output becomes the product of these two things. 

C) Simple transfer system model. We can re-express the system described by equations from 

Figure 6.3 using a simple Direct Form II realization, where the Z-1 block essentially represents 

a sample-delay. When we write out the impulse response function for this system, we will have 

to use the “state” variable w[n] due to the system architecture (Equation 6.4a). Algebraic 

rearrangement of the coefficients in the difference equations describing this system allows us 

to create the formulation in Equation 6.4, which might give a little bit of intuition about what 

this state variable w[n] means. We know that b0 must be less than 1 and that in general the 

system becomes less stable as this coefficient becomes closer to 1. This might represent 

something like a viscoelastic coefficient intrinsic to the muscle and tissue, which opposes the 

rate of change. Ultimately we do not empirically estimate these kind of properties of the tissue, 

but hopefully formulating it in this way shows how such things could be used in a model if 

desired. 

D) Using forelimb position filter characteristics to sanity-check model formulations. Red 

bars are +/- one standard deviation, which includes each kind of marker. In general, there is 

more clear frequency content in the range of 2-5 Hz (which corresponds to the expected 

frequencies of the reach) on the X-Axis and Z-Axis. The Y-Axis does not demonstrate a clear 

trend, which makes sense. 

muscles that generate the forces necessary to alter the movements of the limb (Figure 6.2A). 

While the state of the limb, as well as the command signals to the muscles issued by the motor 

neurons are continuous functions of time (Equation 6.1), the measurements of the limb 

kinematics reflecting such things are discrete samples indicated by the discrete function ylimb[n]. 

In order to simplify the system, components that probably do relate to the behavior of the 

system in some way, but which are not measured directly and will not be inferred from 

https://docs.google.com/presentation/d/15szE6J_P_AQO7G_Fgp1l1VkBPBjfCG5W_r1JVT5vfeA/edit#slide=id.g9c6b3227ee_0_0
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experimental manipulation, are assumed to contain a negligible influence and lumped together 

into error covariance noise terms. These things include the displacement of the limb that is 

directly due to the muscle fiber contraction (D(t)), as well as the map of the limb state to its 

position (C). Furthermore, the constraints imposed by the limb state (its past history of 

movement, which may include its velocity and acceleration depending on model order) due to 

mechanical properties of the tissue, such as the viscoelasticity of tendons and muscle, as well 

as the mass of the limb segment under consideration, are not measured directly, but should 

contribute to the interpretation of any regression to estimate a linear matrix (A) relating the state 

of the limb to the rate at which the state changes (Equation 6.1).  

If we consider the state of the limb as immediately preceding some filter that is applied to the 

state of the limb and which realizes the position of the limb, we could also theoretically measure 

the filter characteristic of such a system from its impulse response to a very slight perturbation 

(hmove[n]; Figure 6.2B, Equation 6.2). To get some intuition about the limb state filter, we can 

change the basis for how the data is expressed. In the state-space formulation, the limb state 

and position signals exist in the time-domain. Applying the Z-transform to the system described 

by Equation 6.2 changes the basis to a discrete frequency-domain representation (Equation 

6.3), which enables an alternative realization of the filter using a Discrete Form II diagram 

(Figure 6.2C).  

When posed as a Discrete Form II system with a single delay, which represents the 

dependence of the system on its past state under the assumption that the limb state is only 

described by its past position58, solving the system difference equations59 and rearranging them 

algebraically yields Equation 6.4. This format gives us two interesting pieces of intuition about 

                                                
58 Approximately, the value dx[n]/dt ∝ y[n] - y[n-1] approximates the change in limb position when the limb 

state function x[n] only represents the past and current values of the limb position y[n].  
59 That is, y[n] = b0w[n] + b1w[n-1], where the system state variable w[n] = x’[n]/a0 - a1w[n-1]. 
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the limb movement system. The first is that such a system description, which represents the 

simplest discrete realization of a system with a feedback and feedforward delay term, 

necessitates the use of a “hidden” state variable; could this state variable contain a 

representation in the nervous system (Equation 6.4A)? Second, when the equations are 

rearranged to relate the past “hidden” state value to the past movement value, we see that at 

any instant, the current position of the limb is some weighted difference between the “hidden” 

state and the past position, indicating that the “hidden” state correlates with the velocity of the 

limb in some way, while the weightings between the two terms may represent a combination of 

intrinsic tissue properties and time-varying command signals from the nervous system. As a 

final point about the value of the Direct Form II realization in this context, it can be used as a 

model validation to check the final coefficients for a more granular model: once the filter 

coefficients for the system are recovered, the frequency content passband can indicate whether 

the filter allows movements in the physiological plausible range of frequencies (e.g. Figure 

6.2D), as well as if the filter poles and zeros exhibit bounded-input, bounded-output (BIBO) 

stability. 

Dynamics of cortical sensorimotor signals 
The standard state-space diagram can also be used to describe the cortical extracellular field 

potentials which are the real subject of interest when evaluating cortico-cortical sensorimotor 

integration in the rodent stroke model (Figure 6.3A). In this format, the output g(t) becomes the 

rate of action potentials specifically in corticospinal units that innervate the motoneuron pools 

influencing the output limb effector muscles. In the chronically implanted rat, it is impossible to 

directly target recordings to such a specific sub-population of cells, so it is not known if units 

with this kind of a relation are present in every recording (i.e. cells of this type are typically about 

1.5-mm below the surface of the exposed cortex, as shown in Figure S6.4 prior to the electrode 

implantation; rostrocaudal and mediolateral location of the microwire array bundles is 

https://docs.google.com/presentation/d/15szE6J_P_AQO7G_Fgp1l1VkBPBjfCG5W_r1JVT5vfeA/edit#slide=id.g9a41039748_0_116
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approximated with respect to the patterns of the vasculature and the movements of the 

stereotaxic arm). 
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Figure 6.3: Standard cortical output state-space 

control model. 
A) State-space model with output as corticospinal action potential rate. This panel 

suggests the core problem facing the neurorehabilitation engineer who is interested in 

understanding how sensory and motor cortices “reconnect” after injury by virtue of signaling 

observed in one or both locations. The activity on the left represents channels obtained from a 

real recording in a rat with channels in both sensory and motor regions. The boxed region 

shows an evoked response to a stimulus (red), which will be described in the next panels. 

There appears to be a large population-level response that is evident in the LFP and possibly 

also in the spiking that occurs approximately 100-ms after the stimulus. Given that cortex is 

probably involved in regulating several kinds of processes, which must necessarily be 

mediated via the signaling of its neural constituents, is there a way to delimit whether the 

apparent “response” observed later (non-boxed channels) relates to the observed one? 

B) Which parts of the neural signal are which? Generically, these terms could be thought of 

analogously to the feedback, feedforward, and state components in the Direct Form II block 

schematic, although there is no guarantee that the neural architecture implements these things 

in the same way. This is simply to illustrate that there are some core components of the system 

that may be difficult to distinguish given that they are probably all “meshed together” 

somehow within the information contained by the network.  

1. Internal Model Adaptation. Cerebral cortex is not implicated in online feedback and 

error correction, with the exception of responding to visual stimuli. Instead, in this 

context, cerebral cortex may be more likely to be involved in motor adaptation that 

occurs over the course of multiple trials (and which resembles changes observed during 

motor learning, with respect to “shifts” in tunings of unit activity).  
2. Prediction. Cerebral cortex probably does implement some sort of internal model that 

allows it to predict the limb state over the course of the behavior in order to issue 

subsequent commands accurately. Chapter 5 provides empirical evidence that it is 

often possible to fit a first-order linear recursion to the system in order to capture it 

fairly adequately.  
3. Output. Corticospinal cells in the cerebral cortex in some (rare) cases project directly 

to the motoneuron pools of interest with respect to the target limb effectors. These 

pools contain cells that innervate individual muscle fibers; their contractions exert force 

on the limb segments via contractions that act on points of attachment to the skeleton. 

Therefore, such output likely does not form a directly linear relation due to the 

nonlinearities introduced by things like the mechanical properties of the connective 

tissue and the summation of movement in a multi-segment model with multiple degrees 

of freedom. 
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More recent work that makes use of optical signals in the mouse model has fortunately 

addressed this to some extent (Masamizu et al. 2014). Specifically, there appears to be a 

distinct task-related response differentiation between the horizontally-connected cells of Layer 

⅔ and the cells with descending corticospinal output in Layer 5b when learning to pull a lever. 

Interestingly, this may relate to the putative consolidation of the motor behavior, which could 

subserve the decrease in apparent tuning of Layer 5b cells with respect to active involvement 

during movements (Peters et al. 2017a, Peters et al. 2017b). Taken together, in the context of 

the Chapter 5 results, these studies suggest that cortical dynamics that are robustly present 

and related to movement may relate more strongly to ongoing patterns of activity in the 

horizontal, presumptively cortico-cortical unit activity (here, represented by w*(t))60. Note that 

this cortical population state is intentionally denoted w*(t), suggesting that it may relate 

intrinsically to the “hidden” filter state describing the limb movements in the Direct Form II 

realization (w[n]). We will return to this point shortly, but first the rest of the system diagram 

presented in Figure 6.3A should be addressed.  

Again, we are interested in the relation between putative sensory-related information and 

putative motor-related output during behavior, since this would provide an indicator of the 

functional relevance to the cortical circuit of axonal sprouting suggested in the works of 

Dancause and colleagues (2005). The left inset of Figure 6.3A shows unfiltered field potentials 

recorded from two electrode arrays in different regions of the rat cortex. The red box indicates a 

stimulus, while the black box indicates robust deviations from standard activity that are evident 

across most channels in one of the arrays approximately 100-ms after the stimulus. Even within 

the array, we see that there is somewhat of a gradient in the distribution of onset times of the 

large oscillatory activity that may relate to the stimulus; it is tempting to relate such activity 

directly to the network state (e.g. the mapping D), for example in the oscillations observed later 

                                                
60 For formatting reasons, w “hat” is referred to as w* in the text; it is shown correctly in Figure 6.3a. 
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on the channels of the other probe in the array (Figure 6.3B). More immediately, could there be 

a potentially nonlinear mapping of such activity to the cortical state (B(t))? For example, if the 

amplitude of such oscillations sets a criterion for phase-entrainment of unit activity that resets 

“initial conditions” of a cortical dynamical system, it’s one way that information could transfer via 

such a mechanism.  

In fact, each of the probe groupings (Figure 6.3A,B) represents activity recorded from forelimb 

sensory cortex, with the top channels located on the same side as a mechanical solenoid 

stimulus delivered to the paw while the bottom channels are from the sensory representation 

opposite the solenoid stimulus. Therefore, we see that the representation even of a sensory 

response that is isolated from behavior becomes more complicated: the “traveling” LFP waves 

are likely intrinsically related to some combination of model correction, prediction, and (during 

behavior) corticospinal output that occurs across both hemispheres during behavior (Figure 

6.3B). Because of this complication, it means that some experiments in the anesthetized animal 

which model the sensory response to cutaneous stimuli (i.e. as occurs during contact between 

the skin and pellet during the retrieval) in isolation from motor output can help greatly in 

calibrating and simplifying models attempting to capture information transfer related to the 

sensory and motor signals. 
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Figure 6.4: Signal substrates for cortical 

sensorimotor information transfer. 

A) Acute solenoid experiment overview. In this case, the recording was actually taken from 

bilateral sensory areas; the “early” activity corresponds to the contralateral hemisphere and the 

“late” activity corresponds to the ipsilateral hemisphere.  

B) Possible role of LFP in sensory transfer. This holds for sensory and motor areas when we 

use the solenoid paradigm as well. Here, we can see that the LFP “bump” that occurs 

approximately 250-ms after trial onset (in this case, subtracting the latency for the solenoid 

strike suggests that it is closer to 200-ms after the strike or 150-ms after the retraction of the 

solenoid). The LFP appears to robustly reflect some kind of mechanism that either directly 

mediates information transmission between these areas, or at the very least is 

epiphenomenologically related to it. While the latter case is somewhat dissatisfying, if all we 

are interested in is using this as an assay of recovery related to the motor performance on a 

task, this at least provides a starting point.  

C) LFP minima may indicate “packets” for information transfer. Returning to the solenoid 

stimuli, if the LFP seems to robustly show us some response to the solenoid stimulus, it seems 

like a key might be either the negative-going or positive-going peak of the LFP, which is 

probably caused by some sort of synaptic sink or source that is ubiquitous in the region of the 

recording electrode. The time to the peak of the negative-going deflection that follows the 

solenoid strike in this rat indicates that both S1 and RFA experience peaks that are much more 

closely “linked” temporally than we would expect on the basis of synaptic delays, which is 

interesting. The RFA peaks do occur after the S1 peaks, which intuitively does make sense. So 

this indicates that there might be some sort of nonlinearity that also “binds” the sensory and 

motor activity in an extraordinarily tightly-coupled manner. 

D) Modeling considerations for population-level motor cortex feedback and feedforward 

activity. There are two components in the sum that produces g(t): one mapping from the 

population state (w_hat(t)) and one mapping from the gross population events mediated by the 

LFP. While in the case of the moving rat it is impossible to accurately assign either term to 

zero  definitively without creating an extremely large parameter-space, in the anesthetized 

preparation it should be safe to assume that w_hat(t) is zero: there is not some movement 

target in mind, there is only the response to the solenoid stimuli. 

 

Isolating sensory-specific signals 
Unilateral recordings in the unilateral forelimb sensory and premotor cortex of the anesthetized 

rat in response to mechanical solenoid stimuli allowed us to test for sensory-specific signals 

(Figure 6.4A). Coherent averaging of the LFP in response to solenoid-only stimuli indicate the 

presence of both a short- and long-latency response that may be more salient in the increased 

variance of the LFP in both the short- (approximately 30-ms) and long- (approximately 150-to-

https://docs.google.com/presentation/d/15szE6J_P_AQO7G_Fgp1l1VkBPBjfCG5W_r1JVT5vfeA/edit#slide=id.g9a41039748_0_71
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180-ms) latency responses (Figure 6.4B,C). A manuscript quantifying these responses, as well 

as their modulation by intracortical microstimulation (ICMS) in the premotor cortex, is in 

preparation (Hayley et al. 2020). Given that there is an LFP response present in both sensory 

and premotor cortices contralateral to the stimulus at both a short- and long-latency relative to 

the stimulus, it suggests that the direct mapping of the LFP response onto the corticospinal 

output could be achieved in such a preparation, provided that there actually is a corticospinal 

output (Figure 6.4D; in the anesthetized rat not performing a motor behavior, there is an 

expectation that w*(t) = 0). During ICMS, g(t) is non-zero in the anesthetized preparation, 

suggesting that such a mapping could be recovered. Since ICMS induces large signal artifacts 

that would preclude the ability to tie the LFP response to corticospinal output directly without 

some calibration of the relative timing of the combined ICMS and peripheral stimulus, it may be 

advantageous to utilize other known neurophysiological substrates for studying such a 

response.  

The H-reflex, which is typically used as an electrical analog of the stretch reflex in order to 

measure reflexive sensorimotor integration, is known to be potentiated via cortically-mediated 

pathways (Wolpaw & Chen 2001, Chen et al. 2006). However, as far as the author is aware61, 

the H-reflex response has been surprisingly unstudied at the cortical level. An anesthetized rat 

preparation using EMG to measure the response in the stimulated muscle while simultaneously 

recording from the cerebral cortex would then allow the indirect measurement of putative 

corticospinal output by virtue of the amplitude of the H-wave that follows the initial M-wave that 

is due to the immediate recruitment of corticospinal axons during muscle stimulation. It is 

interesting to note that the expected onset of the H-wave is in the approximate 30-ms time 

window that may relate to the early response observed in cortical LFP. One possibility is that 

                                                
61 Studies of reflex pathways are not the author’s area of familiarity and so this is an important qualifier 
that such studies may exist but the author could not find them from a review of the literature regarding the 
H-reflex. 
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this component of the LFP response represents some sort of intrinsic tracking of limb position or 

limb sensory response that is intrinsic to the cerebral cortex, which is all the more fascinating 

given that the response is observed under anesthesia. Could this response also relate to the 

modulation of ICMS somatotopic territory that occurs when the position of the limb of interest is 

manipulated (Sanes et al. 1992)? 

Neural signaling substrate for sensorimotor information transfer 
While the ability to isolate some components of the sensory response is afforded by the 

anesthetized model, open questions remain regarding the transfer of this information to the 

motor cortex. For example, if the LFP represents some sort of information transfer mechanism 

to the motor cortex, it might be expected that this signature would show up in the average LFP 

signal of the cortical population, perhaps indicating some sensory-related calculation during this 

time (Figure 6.5). While coherent LFP oscillations do occur in motor areas, the relative 

alignment of these things when averaged across trials (at least in the example rat of Figure 

6.5B) indicates that there is probably some nonlinear relation between the coherent LFP 

deflections in sensory areas and the population code in motor cortical areas during behavior.  
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Figure 6.5: Where to look for indication of sensory 
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prediction in motor cortical signals? 
A) Modeling considerations for the rest of the population activity in the motor cortices. 

Another helpful illustration that is realized by putting the system in this state-space 

formulation is that the mapping to the corticospinal action potential rate is actually constrained 

by the corticospinal cells being the output; therefore, if it were possible to directly identify the 

corticospinal units, while simultaneously recording from the other cells, a more accurate model 

that defines what filtering is occuring in the rest of the population could be refined by 

connecting more pathways (signaled abstractly by the dashed red line). In this case, since g(t) 

is technically a subset of w_hat(t) itself, there is a recurrence relation there which would need 

to be included in the block diagram to accurately capture those relations in a model.  

B) Cross-trial comparisons of motor and sensory LFP during Grasp alignment. Further 

suggesting the significance of the LFP, here we see that the cross-trial average of the LFP in 

alignment to Grasp shows a substantial negative-going peak across trials. The Grasp should 

coincide quite tightly with physical contact to the pellet. 

 

Motor signal indicator of sensorimotor information transfer  
Returning to the anesthetized data, we see that after a subtotal cortical ischemia in primary 

motor cortex of the same hemisphere from which premotor and sensory unit activity are 

recorded, there is a difference at the level of individual rats in terms of the evoked unit 

responses in premotor cortex with respect to the solenoid stimulus (Figure 6.6A-D). 

Interestingly, the second rat in this comparison sustained the worst deficits in behavioral 

performance following the injury, which may have been larger than any of the other rats (lesion 

volume analysis in progress; Hayley et al. 2020).  Also of interest is the fact that the combination 

of ICMS and solenoid stimulus (Figure 6.6D) leads to a suppression of activity in the temporal 

region surrounding the ICMS response, with the end result that the solenoid-evoked unit activity 

is apparently more salient in premotor cortex. The ability of ICMS to induce a “rebound” 

response at a long latency during stimulation of RFA to the secondary peaks observed in S1 in 

some cases after solenoid stimuli (e.g. Figure 6.6E) may relate in some manner to therapeutic 

effects of closed-loop ICMS protocols in fostering behavioral recovery (i.e. Guggenmos et al. 

2013), although such a thing is purely speculative.  

https://docs.google.com/presentation/d/15szE6J_P_AQO7G_Fgp1l1VkBPBjfCG5W_r1JVT5vfeA/edit#slide=id.g9a41039748_0_62
https://docs.google.com/presentation/d/15szE6J_P_AQO7G_Fgp1l1VkBPBjfCG5W_r1JVT5vfeA/edit#slide=id.ga7b89e95e3_0_17
https://docs.google.com/presentation/d/15szE6J_P_AQO7G_Fgp1l1VkBPBjfCG5W_r1JVT5vfeA/edit#slide=id.g9c79676241_0_1740
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Kalman filter state models 
The anesthetized model provides some indications that the LFP may be involved somehow in 

relating sensory and motor information between sensory and motor cortical regions. It suggests 

that this may somehow relate to the spiking response of units in motor territory that is further 

removed from sensory territory, and this relation may be highly nonlinear. However, the issue of 

how the sensory, motor, and kinematic signals are all tied together has still been left 

unaddressed; it cannot be answered in the anesthetized model. Instead, it requires the 

reconstruction of markers on the relevant limb segments in three-dimensional space during the 

pellet retrieval (Methods). 
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Figure 6.6: Where to look for indication of sensory 

feedback in motor cortical signals? 

A) and B) Example of short-latency evoked unit responses in FL-S1 only. Sensory 

response shown in A, Premotor response shown in B. Also interesting is the apparent 

nonlinear response between evoked spiking activity in premotor areas and in sensory cortex. In 

this case, the solenoid strike elicits activity in sensory cortex, but not in premotor cortex. 

C) and D) Example of short-latency evoked unit responses in both the rat S1 and RFA.  

Sensory response shown in C, Premotor response shown in D.  However, in a different rat 

(which, incidentally, had the largest ischemic lesion volume of any rat in the solenoid study), 

evoked unit activity is present in both Sensory and Premotor cortices in response to the 

solenoid stimulus. Interestingly, in this case, when ICMS in RFA precedes the solenoid strike, 

it appears to make the evoked activity more salient. 

E) Examples of long-latency “rebound” responses. These longer latency responses could be 

potentially explained on the basis of rebound from a hyperpolarized membrane potential 

“state.” The time until the observed evoked spikes is “long” (hundreds of milliseconds); this 

suggests a possible relation to the known duration of inhibitory postsynaptic potentials (IPSP) 

caused by GABAb, which could last up to 200-ms or 250-ms. 
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Figure 6.7: Kalman state filter model 

A) Kalman state filter model overview in sensorimotor cortex. Another way that we could 

think about the state-space model is by using the Kalman filter. The model provides a solution 

to optimally combine the error covariance matrices of some prior on the data with posterior 

observations (measurements) so that the error terms due to both kinds of information about the 

output process (which is to be estimated) is combined in a statistically optimal way that makes 

the predictions (hopefully) more accurate. In this case, the output is the “Limb State.” 

B) Example of “cleaning” markers by predicting limb state using past limb state. The 

Kalman filter can be applied to limb markers on their own, setting acceptable bounds for post-

hoc recovered measurements in order to denoise the recovered trajectories. 

C) Example of estimating limb state using all data in state vector and allowing matrices 

to exhibit adaptation on a short timescale. This further improves the estimated limb 

trajectory, but is this strategy informative with respect to recovering the encoding of 

movements and sensory information in the neural state space? 
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Figure 6.7A provides a diagram of possible calculations and considerations involved in the 

Kalman formulation of a state filter that includes some of the computational mechanisms 

discussed previously. Permutations of this filter are possible by rearranging the system 

measurement and system state variables. For example, a simple “cleaning” filter for the noisy 

marker position data returned by a deep learning network that was used to label individual digit 

and forelimb markers (DeepLabCut, Mathis et al. 2018) can be created by using the limb 

position as the Kalman output and using the limb position in combination with its past history as 

the Kalman filter state. The probability of observing the estimated marker can be computed 

given the updated Kalman gain matrix combines the prediction covariance matrix that is based 

on the prior of the Newtonian equations governing an object in motion with the posterior 

observation and associated covariance from the AI markers. If this probability is lower than a 

desired threshold, it could be interpreted that the observation is an outlier and should be 

discarded, such as the intentionally mislabeled point in Video 6.3. In such a case, the data can 

either be interpolated via some other method, or the prior prediction value can be used directly 

(e.g. Figure 6.7B).  

Using this formulation we can also go to the other extreme: we predict the marker position data 

using all the available data, including the past limb state, the LFP time-series and cross-

correlations, and the unit activity from both cortical areas, while allowing our time-series 

estimates of the covariance to change as a function of the relative time within a given trial. The 

result is quite accurate (by comparison to the expected error if only the average movement 

trajectory is used; Figure 6.7C), but it does not really tell us anything that we are interested to 

learn about the state of the network. 

 

https://docs.google.com/presentation/d/15szE6J_P_AQO7G_Fgp1l1VkBPBjfCG5W_r1JVT5vfeA/edit#slide=id.g9a41039748_0_566
https://docs.google.com/presentation/d/15szE6J_P_AQO7G_Fgp1l1VkBPBjfCG5W_r1JVT5vfeA/edit#slide=id.g9a41039748_0_20
https://docs.google.com/presentation/d/15szE6J_P_AQO7G_Fgp1l1VkBPBjfCG5W_r1JVT5vfeA/edit#slide=id.g939e834f2c_0_59
https://docs.google.com/presentation/d/15szE6J_P_AQO7G_Fgp1l1VkBPBjfCG5W_r1JVT5vfeA/edit#slide=id.g9a41039748_0_1
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If we consider the biological arrangement of a Kalman scheme, we might drastically rearrange 

the model (Figure 6.8A). In this case, the output is not actually the limb state; instead, the 

output is the activity of the motor population (and technically more specifically the corticospinal 

cells with descending outputs, Figure 6.3A). This formulation is more akin to what the brain 

might experience: it has no other “sensor” for building the limb state other than the propagation 

of nervous activity, presumably as reflected by activity in the sensory cortex. An extremely 

simplified representation that predicts spike rates using the “hidden” state could then be 

compared for accuracy by seeing what the deviation of the network estimated “hidden” state of 

the limb is from the actual measurement of the limb (recalling that the Kalman is statistically 

optimal with respect to prediction of the output in combining the prior and posterior covariances; 

therefore, the state variable could even exceed the total sum of squares if there is not a very 

strong relation between the state and the output variables). When covariance matrices are 

linear and time-invariant (LTI), this formulation is not very good at tracking the limb state (Figure 

6.8A) as might be expected. 

Retaining a similar arrangement of outputs and inputs makes sense and gives us a biological 

comparison that helps ground the model in reality. However, the previous inaccurate model did 

not attempt to add any interactions between sensory and motor signals that might be indicative 

of information transfer between the two. What if the limb state predicts the arrival of an incoming 

“sensory packet” (e.g. the large deflections in LFP present in FL-S1 but not consistent for motor 

channels)? Furthermore, what if the predicted output was not just spikes, but the average LFP 

signal in the motor areas? We can realize this arrangement quite easily, and introduce the prior 

expected model state that was obtained in the anesthetized experiments by suggesting that the 

transfer function for sensorimotor information is in the cross-correlation between the motor and 

sensory signals (Figure 6.8B). Note that this is a major model assumption (and as we will see, 

probably an area in which the model could be improved upon). When we use this formulation 

https://docs.google.com/presentation/d/15szE6J_P_AQO7G_Fgp1l1VkBPBjfCG5W_r1JVT5vfeA/edit#slide=id.g9c79676241_0_1703
https://docs.google.com/presentation/d/15szE6J_P_AQO7G_Fgp1l1VkBPBjfCG5W_r1JVT5vfeA/edit#slide=id.g9c6b3227ee_0_103
https://docs.google.com/presentation/d/15szE6J_P_AQO7G_Fgp1l1VkBPBjfCG5W_r1JVT5vfeA/edit#slide=id.g9c79676241_0_1703
https://docs.google.com/presentation/d/15szE6J_P_AQO7G_Fgp1l1VkBPBjfCG5W_r1JVT5vfeA/edit#slide=id.g9c79676241_0_1703
https://docs.google.com/presentation/d/15szE6J_P_AQO7G_Fgp1l1VkBPBjfCG5W_r1JVT5vfeA/edit#slide=id.g9c79676241_0_1703
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and then recover the error in the forelimb state, we see that it represents an improvement on the 

model that uses only unit activity, but there is still a substantially poor relation between the 

model hidden state and the actual limb state (Figure 6.8A).  

 

Figure 6.8: Neural state encoding 

The Kalman equations are reformulated to predict the neural state using a combination of the 

limb state (kinematics) and LFP-derived features. Particularly in the sensory cortex, large 

event-related deviations may represent discrete events that give additional information and 

confidence in recovering the neural state encoding.  Blue lines indicate the average LFP from 

sensory channels. The predicted update of the state vector x at each step yields values of the 

kinematic signal that can be compared to the measured values to estimate error in those signals 

as they relate to the encoding. The Kalman filter is not designed to be optimal with respect to 

error in the noisy sensor measurements with respect to updating the hidden state x, but rather, 

with respect to estimating the output z. Therefore, if our optimal regression of the neural state 

gains very little information or is even made worse by the observed kinematic estimates, we 

would expect for the sum of squares error (SSE; red dashed line) in the recovered state 

approximation used at each update step to potentially have a higher amount of error than 

occurs when taking error with respect to the mean value across all trials for that same 

kinematic information (black dotted line; total sum of squares (SST)).  

 
 

https://docs.google.com/presentation/d/15szE6J_P_AQO7G_Fgp1l1VkBPBjfCG5W_r1JVT5vfeA/edit#slide=id.g9c79676241_0_1703
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A) Stationary Kalman formulation to recover population spike features using kinematics 

and only a single average sensory LFP is not very accurate. When lumping all of the LFP 

into one average signal from any channel in sensory territory, we get very little information 

from the kinematics in predicting the neural state, as indicated by the close relation between 

SSE and SST, especially when SSE exceeds SST.  

B) Error is improved when breaking the LFP into multiple components based on spatial 

coverage, and augmenting with spike rate information. Here, the sensory LFP is used on 

two channels that have large event-related modulations in LFP signal (blue lines), alongside 

the average LFP signal from channels that were co-registered to motor territory (magenta line). 

The state variable that is given is actually the correlation time-series between each of the 

sensory LFP signals and the motor LFP signal. The yellow box emphasizes the improved 

utilization of kinematic information from the noisy sensor measurements, while the orange box 

emphasizes that assumptions on stationarity of these signals may change timescale at a time-

point roughly corresponding to the time it takes for the rat to bring the pellet back to his 

mouth. 

 

This mismatch might occur for several reasons. As alluded to in the first “accurate” model, it 

could relate to the requirement for model components to be LTI when in reality they are 

probably time-varying. Related to this, some of the model components might simply retain a 

nonlinear transfer function, which precludes the use of the standard Kalman filter where 

predictions and measurements are incorporated via matrix multiplication. Alternatively, future 

experiments that make use of empirical tissue property measurements to recover an estimate of 

the “hidden state” (w[n], Figure 6.2C) as it relates to the cortical population state (w*[n], Figure 

6.3A). 

  

https://docs.google.com/presentation/d/15szE6J_P_AQO7G_Fgp1l1VkBPBjfCG5W_r1JVT5vfeA/edit#slide=id.g9a41039748_0_116
https://docs.google.com/presentation/d/15szE6J_P_AQO7G_Fgp1l1VkBPBjfCG5W_r1JVT5vfeA/edit#slide=id.g9c6b3227ee_0_103
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Methods 

Complex rodent behavior box 
An automated training box for the rat pellet retrieval task was developed as a modified version 

to one that was previously described by our group (Bundy et al. 2019). In this study, the box 

additionally features an approximately 1-inch diameter hole (Figure 6.1A), through which the rat 

can sniff the external environment. The box has an additional infrared collector-emitter pair that 

forms a beam across the exit of the hole, which is used by a microcontroller circuit to trigger 

other events during the behavioral task as described below. Custom box parts were printed 

using a stereolithography printer (FormLabs; Figure S6.2). Some of the notable features are 

described below. A general list of printable parts that are required for box assembly is provided 

in Table 6.1. 

 

 

 

https://docs.google.com/presentation/d/15szE6J_P_AQO7G_Fgp1l1VkBPBjfCG5W_r1JVT5vfeA/edit#slide=id.g9a41039748_0_43
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https://docs.google.com/presentation/d/15szE6J_P_AQO7G_Fgp1l1VkBPBjfCG5W_r1JVT5vfeA/edit#slide=id.g9c79676241_0_1595
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Table 6.1: List of parts for stereolithographic fabrication 

of rat behavioral box assembly 

Custom complex task components are broken down into several modules, and can be 

printed in batches. The rat behavioral box is broken down into 5 different modules that 

require 3D-printed parts: the Pellet Platform assembly, the Button assembly, the Door 

assembly, the Dispenser assembly, and the Approach Blocker assembly. Other parts are 

printed on an ad hoc basis; some experimenters prefer not to use the Approach Blocker 

assembly. It was found to be useful in these experiments in order to impose a greater 

stereotypy on the manner in which the rat approached the door, which has a tremendous effect 

on the production of associated neural activity that relates to the behavior. 

 

Pellet Dispensers 

The pellet dispensers are a major cost-saving component. They only require a relatively 

inexpensive stepper motor and motor driver, with total cost of parts per dispenser of less than 

$50 whereas a comparable commercial assembly costs anywhere from $800 to over $1,000 

(Figure 6.1A); each box contains two dispensers, so to create an array of training boxes to 

scale up training of rats would quickly add up. Upon initial construction, such dispensers could 

reliably be expected to deliver between 48 to 50 of 50 test pellets; however, performance tends 

to degrade over time, typically due to accumulation of pellet fragments and dust along the 

grooves of the rotor and in the nozzle. With this in mind, two wing screws lock the bowl in place 

above the rotor; these screws are detachable and if the rotor or nozzle funnel gets jammed, the 

assembly can be detached, cleaned, and reassembled (Figure S6.1). Aside from the 3D-printed 

L-brackets (which could probably be replaced by comparable standard commercial 

components), we found that the standard grey photopolymer resin (FormLabs Grey Resin Pro 

v4) was suitable for each part, although some dispensers have versions printed using a fiber-

glass impregnated resin (FormLabs Rigid Resin), which only seemed to be harder to remove 

from the stereolithography platform. A final note is that the accurate placement of the pellet at 

the target location is an important consideration in this behavioral task; incorrect delivery leads 

https://docs.google.com/presentation/d/15szE6J_P_AQO7G_Fgp1l1VkBPBjfCG5W_r1JVT5vfeA/edit#slide=id.g9a41039748_0_43
https://docs.google.com/presentation/d/15szE6J_P_AQO7G_Fgp1l1VkBPBjfCG5W_r1JVT5vfeA/edit#slide=id.g9c79676241_0_1601
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to things like build-up of mounds of pellets that can have a deleterious effect on the manner in 

which the rat learns the behavior. To mitigate this, manual calibration of the dispenser once the 

full box is assembled is an important step. Using a custom dispense-guide to slightly alter the 

output location of the pellet dispense tubing helps greatly in ensuring the consistent delivery of 

the pellet to the target (Figure S6.3); such calibrations are necessary on a box-by-box basis 

because the expected tolerance in fabrication of the larger box components (such as the 

Plexiglas doors and walls that must be cut using larger machinery) is expected to result in jitter 

of part alignment that causes the slight deviation of the assembled door/pellet delivery system in 

this manner. 

Selectable array of Behavioral Routines 

The complex box contains an array of different routines (typically ranging between 9 and 11 

routines depending on the box and which experimenters use it; on that note, the addition of a 

sign-in sheet to any location with a behavioral box is noted as an important component in 

ensuring the adequate maintenance of the box when used by multiple experimenters). In 

general, the tasks range from the simplest variety, which allow the experimenter to simply open 

one or both doors by pressing the corresponding button at the back of the box as the rat would 

typically learn to do, up through different degrees of difficulty. For example, in the lever-press 

task, an intermediate paradigm is to create a positive association with the button by 

automatically dispensing a pellet any time it is pressed, while also raising the door. In this way, 

the rat does not become startled by the opening of the door when he presses the lever. Each of 

these tasks may have specific components that can be programmed from the LCD on the side 

of the box without needing to reprogram the microcontroller directly; for example, after a button 

press or nose poke, the door should only remain open for a certain period of time before 

automatically shutting.  

https://docs.google.com/presentation/d/15szE6J_P_AQO7G_Fgp1l1VkBPBjfCG5W_r1JVT5vfeA/edit#slide=id.g9c79676241_0_1611


287 

Alternating door task 

During training, it was observed that rats could become reasonably proficient with both forelimbs 

during pellet retrievals. Since a major expense in each rat is the fixed cost associated with each 

electrode array that is embedded in the rat once it has learned a desired behavior, a prudent 

strategy for the investigator on a budget is to create an experimental design in which the rat 

might produce several different interesting behaviors, each of which serves as an interesting 

experimental endpoint in its own regard. While this requires a greater investment of time for 

both the individual investigator and the rat in terms of training the rat to proficiency, and poses 

greater risks on a per-rat basis, it is the only way to acquire sufficient data that it might be 

possible to get funding for the next round of experiments, hopefully allowing for more electrode 

arrays and therefore more rats. 

The bilateral task is interesting for a number of reasons, and has several variants. In the initial 

training stage, the rat is required to learn to move back and forth from one door to the other, 

while a tone cue associated with the specific door is issued as it opens. The rat therefore is 

learning to associate a tone (and probably the sound of the door) with the reward pellet during 

this period, in addition to learning how to execute the motor behavior with both forelimbs. Once 

the motor task is learned with both limbs, it presents an interesting opportunity to compare the 

roles of each hemisphere during movement, and especially so after injury: it allows a within-

animal comparison of activity, presuming that comparable cortical targets are recorded, for the 

behavior when it is mirrored to reflect the intact versus the paretic effector limb.  

Nose Poke task and Audio Cues 

Furthermore, the bilateral pellet retrieval task represents an opportunity for a decision task, 

where a binary outcome for classification can be used in information theoretic analyses to 

characterize premotor activity. Since the nose poke requires the rat to hold still for a short period 

of time, activity in premotor cortex that is aligned to it is more likely to be related to actual 

premotor processes as they might typically be observed in behaving macaques, as opposed to 
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in the standard reaching paradigm, where the approximate premotor alignment must be 

guessed and the relation of tuned cells with activations prior to a particular movement alignment 

is difficult to classify as premotor- or motor-related. For example, selection of the correct motor 

task and its execution are quite different processes (Diedrichsen et al. 2015). In the nose poke 

task, the rat is required to poke its nose through hole at the back of the box for some 

programmable period of time, at which point it will hear one of the two tones associated with 

each door. The idea is that the tone precedes the door opening slightly, giving the rat a better 

chance of running to the correct door in time. Notably, it cannot precede the door opening too 

much, or the rat will cheat and quickly run to both doors (some rats attempt to do this 

regardless, and the only way to mitigate such a strategy is to make the total allowable trial 

duration quite short). A final point about the nose poke task is that there is some preliminary 

data that has not been analyzed for this thesis, but wherein the tone cue was altered to an 

unlearned tone to determine the response of the rat. The idea is that if the rat demonstrates a 

comparable performance to when either of the other two tones is issued, the tone isn’t really 

being used at all in the behavior and therefore it serves as a control to indicate whether it is 

even useful to perform neural analyses in relation to the tone to begin with. 

Synchronization LEDs and Checkerboard Calibration Patterns 

In the new version of the box, an LED is embedded in the platform next to each door on the 

front, as well as next to each lever (button press) on the back of the box. The LED 

corresponding to the opening door lights up as soon as the motor driver to its door begins to 

raise the door, so that a region of interest for any camera can be trained on this light source and 

a simple channel threshold can be invoked to create a digital synchronization signal; a digital 

output corresponding to this trial signal is synchronized with the neural signal as well, which 

allows the two to be related for each trial.  
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The checkerboard is attached to the door, and so it always moves up and down in 

approximately the region of interest for reconstructing three-dimensional reach markers any 

time that a trial begins. There are many automated algorithms that work with checkerboards; in 

all subsequent descriptions, Matlab (R2017a) was used. In order to detect such a checkerboard 

on a per-frame basis, the function `detectCheckerboardPoints` was applied to between ten and 

fifteen frames for which the checkerboard spans as much of the camera frame as possible. The 

checkerboard squares have a fixed square width of 2.79-mm; using this information, it is 

possible to triangulate the points identified with pairs of cameras in order to recover the 

tangential distortion and intrinsic matrices for stereo-calibrated camera pairs 

(`estimateCameraParameters`). Since this will change (non-trivially) if cameras are bumped 

between trials, the presence of the checkerboard in each trial guarantees that calibration can be 

performed as needed to reliably reconstruct the points. 

Bilateral pellet retrieval task 

Training procedures 

Adult male Long-Evans rats (325g – 335g; 10 weeks on arrival; Charles River) were shaped 

over the course of 12 – 13 weeks until they began to associate audio stimuli with mirrored 

versions of a single food pellet retrieval task as follows. 

Week-1: Handling and acclimation phase 

 Rats arrived pair-housed and were quarantined for the first three days upon arrival. The 

remainder of the first week was spent acclimating the rats to handling by the technician and at 

the end of the first week the rats were split into single housing with environmental enrichment to 

substitute for the presence of their littermate. After single housing, rats were placed on a food 

schedule receiving an average of 15-g of standard rodent chow biscuits per day. 

Week-2: Initial reaching phase 

In the first week after single-housing, rats were acclimated to the behavioral boxes. Any time the 

rats were placed into the box during the acclimation and subsequent sessions, they received a 
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few (2 – 4) food pellets (45-mg Dustless Precision Rodent Pellets; Bio-Serv). After an initial 15-

minute session in which rats were acclimated to the box by periodic addition of food pellets 

directly to the box, rats were introduced to a modified version of the pellet retrieval task in which 

trays designed to hold 16 of the food pellets were placed in front of both doors. The trays 

removed the gap between the normal pellet platform and the reaching apertures milled out of 

the front panel of the box, making it easier for rats to initiate the reaching phase. Once a rat 

retrieved all pellets from one of the two trays using his forelimb, the tray was removed, and the 

door closed on that side to train rats as evenly as possible on both forelimbs. From this point on, 

to acclimate rats to the sounds of the door and pellet dispenser motors, retrievals with either 

forelimb were associated with the opening and closing of the door. By the end of the second 

week, most rats were able to retrieve the pellet from the well on the normal platform with either 

forelimb. 

Week-3: Bilateral audio cue phase 

When allowed to sit in front of either pellet retrieval aperture for an extended duration (on the 

order of minutes at a time), rats become very accurate in retrieving the pellet. During the third 

week, several rats exhibited the ability to retrieve pellets with both forelimbs with such 

proficiency. At this point of training, rats within the cohort began to diverge in level of 

proficiency, and so the exact stage of training for each rat was not identical. Rats proficient with 

either forelimb were moved to a task in which a preparatory tone cue (10 kHz, 500 ms) 

immediately preceded a left (8 kHz, 500 ms) or right (12 kHz, 500 ms) tone cue. During this 

phase, the left or right door corresponding to the tone cue opened with a starting duration of 1.5 

seconds. The tone pattern alternated between the two doors conditionally upon the pellet 

needing to be replaced. If the pellet was undisturbed, indicating that a reach had not been 

attempted, the tone for that door was replayed for the subsequent trial, and the door stayed 

open for 0.5 seconds longer. If the pellet was successfully disturbed, indicating that the rat had 

gone to the correct door, the door opening was reduced by 0.25 seconds, to a minimum of 1.5 
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seconds for each trial, which was limited by the speed of the door motors and the minimum 

distance the door needed to travel. After any successful pellet disturbance, a conditioning tone 

identical to the door cue tone was played to reinforce pairing of moving to the correct door with 

the door’s cue frequency. We found that this additional conditioning cue improved the rats’ 

ability to learn the association of the audio cues with the correct door. This phase took 

considerably longer for the rats to both acclimate to the tone cues as well as become accurate 

at retrieving pellets, sometimes taking several weeks to complete. 

Week-4: Initial nose poke phase 

A few of the fastest-learning rats were able to learn the bilateral audio cued pellet retrieval by 

this point. These rats were introduced to the nose poke component of the behavior. During the 

initial phase associating the nose poke with a reward, any time the rat stuck his nose through 

the nose poke hole and crossed the plane of the infrared beam, a pellet was dispensed directly 

into the behavioral box. A variable lockout time, which ranged between 0.25 and 1.25 seconds, 

was enforced as a lockout to discourage the rat from sitting stationary with his nose through the 

hole. Custom blockers were printed to barricade the apertures typically used for the lever press, 

and these were secured in place during any of the subsequent training and behavioral stages 

involving the nose poke so that the beam could only be crossed by pressing the nose through 

the nose poke hole. During this phase of training, it was helpful to place a pile of 10-20 pellets 

directly below the nose poke hole, which attracted the rat to sniff through the hole. Typically, 

rats became motivated to do many nose pokes within one or two training sessions in this phase. 

Rats that could not perform reaches with both forelimbs were discontinued from the study at this 

point; such rats were typically fixated on retrieving pellets using their tongue were discontinued 

from the study at this point. 

Week-5 onward: Full-task phase 

As early as the fifth week from arrival, rats that learned the nose poke were initiated on the full 

task involving a combination of the nose poke, audio cue indicating which door is opening, and 
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pellet retrieval on that side. Upon crossing the plane of the infrared beam break, a 500-ms audio 

tone played immediately preceding the opening of the left (8-kHz tone) or right (12-kHz tone) 

door. 

As soon as the door began to open, the timer for the trial began running, such that a specified 

trial duration corresponded to the duration from the beginning of door opening to the onset of 

door closing. Initially, the trial duration was fixed to 10 seconds, as the rat typically did not 

immediately run directly to the door after performing the nose poke. Once the rat showed that it 

could reliably retrieve the pellet within the 10-second trial window, the duration of trials were set 

to 5 seconds, with the duration lengthening by 0.5 seconds on trials in which the pellet was not 

dislodged from the well, and shortening by 0.25 seconds to a minimum of 1.5 seconds on trials 

in which the pellet was dislodged from the well. 

During training, at the technician’s discretion, the relative proportion of openings for the left or 

right door could be programmed using an interactive LCD (LCD Shield Kit ID 772; Adafruit) 

attached to the microcontroller circuit running the box. In the initial phase, it was beneficial to 

pick one door that remained at 100% opening likelihood until the rat did several nose-poke-to-

door trials successfully in a row. After this pattern had been established, the proportion of door 

openings was catered individually between and within sessions depending on the progression of 

the rat’s training, with specific emphasis on extinguishing the behaviors described below. 

Rats would try to cheat on the task by selecting only one door and preferentially running to that 

door regardless of which stimulus was played. To eliminate this behavior, the proportion was 

adjusted so that only the “non-selected” door was opened until the rat showed hesitation during 

the audio cue. Although 1.5 seconds was a short enough period that the majority of rats could 

not make it to the correct door if they chose the incorrect door first, a few very fast rats could 

quickly run to one door and then check the second door with enough time to retrieve the pellet 

as the door was closing. To extinguish this behavior, the same procedure was used for setting 
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the “non-selected” door to 100% likelihood, and additionally the technician was tasked with 

quickly removing the pellet if the rat ran to the wrong door first. 

In some cases, the difficulty of this task caused the rats to become apprehensive and stop doing 

nose pokes. For these rats, it was helpful to switch to purely deterministic regimes for prolonged 

trial epochs (25-50 trials) in which the same door opened for 100% of the trials. Once the rat 

was encouraged to begin doing the nose pokes again and started to get into a rhythm of 

successful trial completion, the behavior was then transferrable to the opposite door. 

Qualitatively, rats that became initially discouraged in this way were typically more cautious 

about selecting the door overall, and rarely displayed the “cheating” behavior described 

previously. 

Although rats never reached 100% selection of the correct door, they showed clear signs of 

associating the door cue with one door or the other, such as twitching the corresponding ear as 

the tone was played or showing hesitation when they initially ran the wrong direction and then 

switching to the correct direction. 

While all steps prior to those with audio cues allowed the rats to be trained in parallel using 

multiple automated boxes, even the use of a foam sound chamber to isolate the audio cue of 

one box from its neighbors seemed to produce confusion in training rats. Therefore, during this 

period, rats were trained serially using the same box. As a result, rats at this stage could expect 

one-to-two training sessions per week. 

Expert phase: ready for implant 

By 12 – 13 weeks, rats included in the study were ready for implant. Prior to the implantation, 

baseline recordings, consisting of 100 trials with a 50% probability of either door opening, were 

recorded using a digital camera (GoPro Hero 5). No inclusion criteria for learning the audio cue 

was required, as the behavioral schedule in the subsequent section is designed to account for 

the degree to which the rat makes use of the audio cue. 
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Surgical implantation and electrode array targets 

The implantation of electrodes, built as described in Chapter 3, primarily follows the surgical 

procedure described in Chapter 5. However, a larger bilateral craniectomy was made in order 

to expose the sensorimotor cortex in both hemispheres of the rat (e.g. Figure S6.4). Depending 

on the area of exposed skull rostral to the opening, either one or two steel skull screws (00-80, 

McMaster-Carr) were inserted rostral to both openings, while four more skull screws were 

situated caudal to the openings. In general, the skull screws form an important bonding point for 

the dental acrylic that encapsulates the opening and fixates the recording electrodes in place; 

there is a tradeoff between the total number of skull screws that can be fit onto the rat’s head 

and the overall integrity of the skull, which is an important consideration when a relatively large 

array with respect to the overall size of the rat’s skull is to be mounted. Figure S6.5 provides a 

generic overview of the implant process; however, the practical realization of this process 

typically varies considerably from rat to rat, and it is made more variable if custom non-

commercial electrodes are introduced. The caudal-most two screws were used as common 

reference points for each electrode microwire array.  

Data collection 

While not all of the data that was collected from these rats is presented in this Chapter, because 

these data may be used in future studies or research proposals, a description of the overall 

collection methods is provided. Recording cameras were mounted from several points around 

the behavioral box (Figure 6.1A); in general, camera frame rates were 240 frames-per-second 

(GoPro Hero Black v5). A 33-Ω resistor connected in series to a standard green 5-mm LED 

(Adafruit) produces an 18-mA forward current when attached to the voltage divider circuit for the 

trial-related digital synchronization circuit; the brightness of the LED when powered in this way 

was enough so that even with only 1/1920 second exposure, the lit and unlit state of the LED 

could be distinguished readily. For recordings in which the rat performed the nose poke task, an 

additional video camera was mounted on the ceiling above the entire box, providing a view of 

https://docs.google.com/presentation/d/15szE6J_P_AQO7G_Fgp1l1VkBPBjfCG5W_r1JVT5vfeA/edit#slide=id.g9c79676241_0_111
https://docs.google.com/presentation/d/15szE6J_P_AQO7G_Fgp1l1VkBPBjfCG5W_r1JVT5vfeA/edit#slide=id.g9c79676241_0_182
https://docs.google.com/presentation/d/15szE6J_P_AQO7G_Fgp1l1VkBPBjfCG5W_r1JVT5vfeA/edit#slide=id.g9a41039748_0_43
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the transverse plane of the box floor. The sampling rate of this camera was only 60 frames-per-

second, which was sufficient to capture the general location of the rat traversing the behavioral 

box in order to generate a reconstruction of the path traveled from the nose hole location to the 

target door. Depending on the behavior under consideration, between two and six other 

cameras were trained on the two doors at the front of the box.  

Two of the rats (R19-51 and R19-54) only performed bilateral reaching tasks in which they 

either randomly alternated in moving between doors, deterministically alternated between the 

doors, or sat in front of one door and then the other door on a fixed retrieval schedule. Four of 

the rats (R19-162, R19-163, R19-165, and R19-166) performed variants of the nose-poke task: 

a scheduled version that set a fixed number of nose pokes for which only the left door would 

open, followed by the same number of nose pokes for which only the right door would open 

(Task-L; the left-door trials preceded the right-door trials); a reversed scheduled task (Task-R; 

the right-door trials preceded the left-door trials); and a “hard” version of the task in which there 

was a 50% chance of either door opening for all trials (Task-P). Each design allowed for a 

minimum of 100 pellet retrieval trials, but if the rat would perform more behavioral trials in a 

reasonable time (approximately 45-minutes), then as much data as possible was collected. Two 

additional rats were to be used in collecting data for this latter set of trials (R19-161, and R19-

164); unfortunately, in R19-161 torque on one of the microwire bundles caused it to become 

dislodged during the implantation process and this caused behavioral problems as well as poor 

recordings so the rat was discontinued; R19-164 succumbed to anesthesia following the 

buprenorphine injection that was administered per protocol during recovery from the 

implantation surgery, although it appeared that he was recovering well prior to this injection. 
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System models 

All system models as described in the Results section were obtained using Matlab (R2020b, 

Prerelease version). Data processing in terms of filtering and spike detection were performed 

using the methods described in Chapter 3 and Chapter 5. 

Acute sensory solenoid preparations 

Training procedures 

Rats that did not meet inclusion criteria for the audio-cued bilateral pellet retrieval task (e.g. they 

spent more than 1-2 weeks learning any one part of the full behavior) were used in acute 

experiments designed to measure the influence exerted by ICMS upon evoked sensory 

responses to mechanical stimulation of the forelimb. 

Initial Surgery and Injury 

Rats were anesthetized using an initial dose of isoflurane followed by bolus injections of 

ketamine and xylazine as described previously in the protocol. The animal’s anesthetic state 

was monitored and maintained using bolus injections of ketamine, supplemented by xylazine or 

isoflurane as appropriate. The first surgical procedure followed the description in Chapter 5, 

except that no craniectomy was performed and instead only the burr holes (#00-71 bit) were 

drilled in order to administer bolus injections of the vasoconstrictor Endothelin-1 (ET-1; Figure 

S6.7).  

Postoperative care, training, and testing 

Rats were administered postoperative analgesia and monitored as described in Chapter 5. In 

general, rats appeared to recover well from ET1 and performed better than expected on the 

pellet retrieval task. It is not clear if the use of the complex behavioral box, which includes a 

door that restricts the rats from attempting to repeatedly flail at the pellet unsuccessfully, causes 

the rats to become more accurate on this task in a way that enables them to perform the 

behavior more successfully after injury by comparison to previous works (e.g. Nishibe et al. 

2015; Figure S6.8). Rats were semi-randomly (stratified to try and split initial proficiency equally 

https://docs.google.com/document/d/12txmIzZzlVXlu8GBg6v6ORamjvASL3RX-tBq2ELBeas/edit#heading=h.vs60orcby5hl
https://docs.google.com/presentation/d/15szE6J_P_AQO7G_Fgp1l1VkBPBjfCG5W_r1JVT5vfeA/edit#slide=id.g9c79676241_0_118
https://docs.google.com/presentation/d/15szE6J_P_AQO7G_Fgp1l1VkBPBjfCG5W_r1JVT5vfeA/edit#slide=id.g9c79676241_0_118
https://docs.google.com/presentation/d/15szE6J_P_AQO7G_Fgp1l1VkBPBjfCG5W_r1JVT5vfeA/edit#slide=id.g9c79676241_0_1638
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between groups) divided into two groups: ET1- and ET1+. All rats received focal 

vasoconstrictive injections of ET1 targeted stereotaxically to the caudal forelimb area (CFA) 

contralateral to the preferred reaching forelimb. Rats from both groups were tested on pellet 

retrieval accuracy over as many retrieval attempts as they could achieve within 20-minutes 

starting on postoperative day 8 (PO-8) and continuing every fourth day thereafter through PO-

24. Rats in the “active” ET1+ group were additionally allowed to repeat this process daily as 

opposed to only on testing days. On PO-26, rats underwent a terminal procedure to test the 

ability to evoke sensory activity in the forelimb sensory cortex (FL-S1) and rostral forelimb area 

(RFA). After the acute recording, rats were perfused in order to perform a lesion volume 

estimation on the ischemic injury. 

Secondary Surgery and Data Collection 

In the second, acute procedure, a laminectomy, designed to prevent edema during the 

procedure, was made to allow drainage of cerebro-spinal fluid at the base of the skull. A 

bilateral craniectomy, exposing the sensorimotor cortex of both hemispheres, was performed 

using a dental burr bit to target stereotaxic coordinates for the forelimb sensory cortex. A sparse 

ICMS map was used if possible in order to verify the forelimb representation and boundary of 

the rostral forelimb area (RFA), although movement representation or a clear boundary between 

RFA and CFA was not always possible to determine definitively (Figure S6.9). High-density 

recording electrodes were inserted bilaterally into putative sensory cortex, which was confirmed 

by manually palpating the contralateral paw, and refined using Von Frey microfilaments once 

audible spiking responses were evident. Isoflurane became critical during the secondary acute 

procedure, in order to ensure that large deflections in the LFP that appeared to be related to 

whisking were mitigated and did not contaminate the forelimb response to the mechanical 

stimulus. 

https://docs.google.com/presentation/d/15szE6J_P_AQO7G_Fgp1l1VkBPBjfCG5W_r1JVT5vfeA/edit#slide=id.g9c79676241_0_124
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A miniature 5V solenoid (ID 2776; Adafruit) was then clamped to the stereotaxic apparatus and 

positioned above the forelimb. 1-Hz stimulus trains consisting of mechanical stimuli were 

delivered using this device in a setup resembling the one described in (Foffani et al. 2004, 

Moxon et al. 2008; Figure 6.4A). The solenoid could not hurt the rat: it weighed 12.6g and was 

capable of delivering a maximum impact capable of displacing a load up to 80g. In conjunction 

with the mechanical stimulation of the solenoid, pulses of intracortical microstimulation (ICMS) 

were delivered to the premotor cortex either ipsilateral or contralateral to the solenoid, at various 

offset latencies coupled to the delivery of each solenoid stimulus. Response properties of neural 

units were recorded using polymeric microelectrode arrays (NeuroNexus 4x8 acute array: shank 

spacing of 125-μm and site spacing of 100-μm), during three different types of trials: only-

solenoid stimulation, solenoid and ICMS, or ICMS-only. Data processing in terms of filtering and 

spike detection were performed using the methods described in Chapter 3 and Chapter 5. 

Histological Preparation 

A saline, heparin, and lidocaine solution was transcardially perfused to fixate the brain using a 

3.5% paraformaldehyde solution, and 30%-glycerol post-fixation. 50-µm coronal sections were 

stained with cresyl violet. An example of coronal hemisections corresponding to CFA are shown 

with examples of the small, subtotal lesions generated in these experiments is shown in Figure 

S6.7. 

  

https://docs.google.com/presentation/d/15szE6J_P_AQO7G_Fgp1l1VkBPBjfCG5W_r1JVT5vfeA/edit#slide=id.g9a41039748_0_71
https://docs.google.com/presentation/d/15szE6J_P_AQO7G_Fgp1l1VkBPBjfCG5W_r1JVT5vfeA/edit#slide=id.g9c79676241_0_118
https://docs.google.com/presentation/d/15szE6J_P_AQO7G_Fgp1l1VkBPBjfCG5W_r1JVT5vfeA/edit#slide=id.g9c79676241_0_118
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Conclusion 

After stroke, changes in functional outcomes depend on reorganization of the spared nervous 

tissue and associated plasticity in the filtering that it performs in control of volitional movement. 

This reorganization may occur at many levels of the nervous system. Engineering strategies for 

rehabilitation and specifically the restoration of movement after brain injury are abundant, but 

may not realize their full therapeutic potential until better strategies emerge to evaluate their 

efficacy in modulating specific circuit elements (Chapter 2). Understanding the appropriate 

circuit elements requires a Systems Theoretic approach that incorporates Reflex Theory and 

Hierarchical Theory, while making use of the diverse array of technical tools required to perform 

such experiments in a preclinical model (Chapter 3). In most cases, such tools will necessarily 

be highly application-specific, but once they have been created they can be put to use in a 

variety of experiments that will benefit related preclinical models of rehabilitation at large 

(Chapter 4). It is proposed that optimal reorganization (i.e. recovery) only occurs when there is 

evidence of a cortical movement filter with specific fixed point dynamics (Chapter 5).  

Ultimately, relation of these dynamics to sensorimotor reintegration such as may occur following 

the termination of sprouting cortical axonal processes upon sensory or motor targets will require 

the formulation of a system model capable of separating sensorimotor integration from internal 

model prediction, internal model error correction, and generation of motor output (Chapter 6). 


